Speaker
Description
The structures of solid-state ionic conductors are a compromise between long-range (and hence long-term) lattice stability and short-range coordinative flexibility. To rationally design improved versions for applications such as fuel cells and batteries, we need to understand how this compromise is reached. Diffraction methods alone are inadequate – whether using X-rays or neutrons, ex situ or operando, conventional crystallography or total scattering analysis – because of their dynamic nature. The time-averaged structure is not the whole story. In this talk I will show how we use experimental X-ray and neutron spectroscopy, and computational structure and dynamics calculations, to supplement diffraction when studying solid-state oxide, proton and lithium ionic conductors. We can then validate the insights gained by making targeted chemical modifications and testing their effects on structure and functional physical properties.
Presenter Gender | Man |
---|---|
Pronouns | He/Him |
Condition of submission | Yes |
Which facility did you use for your research | Australian Centre for Neutron Scattering |
Level of Expertise | Expert |