
in Slide, you

logo/management

use one of the two

Los Alamos National Laboratory

CAFlux: A NEW EPICS CHANNEL
ARCHIVER SYSTEM

Kanglin Xu

Nov 14, 2018

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Los Alamos National Laboratory

2/9/16 | 2

CONTENTS

• The current legacy archiver system at LANSCE
• A diagram of CAFlux architecture and related systems
• InfluxDB used as CAFlux storage engine
• Implementation of CAFlux data collection engine with Python

• Channel Access with PyEPICS
• Trade-off between number of threads and asynchronous I/O

• An online configuration system
• Data retrieval and viewers

• Online PV streaming
• Historical PV data plotting
• Other free or commercial dashboards like Grafana

• Data backup and restore
• Future Work

Los Alamos National Laboratory

2/9/16 | 3

THE CURRENT LEGACY ARCHIVER SYSTEM AT
LANSCE

• Archiving storage and data collection
• Archive Engine – an EPICS channel access client
• Archive Daemon to check archive engine status automatically
• Several index files and large amount of data files

• Data retrieval
• Java Archiver Client to browse data, to visualize data and to export data

to spread sheets via a data server
• A command line toolkits with functionality similar to the above Java client
• Archive Data Server based on XML-RPC used to be a gateway for clients

to access the data
• Configuration

• Through XML configuration files
• Released by SNS in 2006 and not an active project currently

• Unfortunately we do have an index file corrupted and have no idea how to
fix it

Los Alamos National Laboratory

2/9/16 | 4

A DIAGRAM OF CAFLUX AND RELATED SYSTEMS

Multiple Search Patterns with wild-
Card “*”

Field value starts with “@”

Los Alamos National Laboratory

2/9/16 | 5

INFLUXDB - A DATABASE SYSTEM OPTIMIZED FOR
STORAGE AND RETRIEVAL OF TIME SERIES DATA IS
USED AS CAFLUX STORAGE ENGINE

• Fast READS and fast WRITES on high volume data
• Having a SQL like query language for RDBMS users

• Supporting a few hundred nodes initially and able to scale to a few
thousand for future due to its clustering design

• Only one server node to be opened to archiving engines and application
clients

• Able to to create database, write and query data by using HTTP API

• But high performance on time series data at the expense of some
functionalities

• Update functionality restricted
• Delete functionality restricted
• No cross table joins anymore
• Fortunately the above functionalities rarely needed for our archiver system

Los Alamos National Laboratory

2/9/16 | 6

INFLUXDB USED AS CAFLUX STORAGE ENGINE

• Save our time and effort on developing a storage engine – different
from legacy archiver

• Easy to use If you have some knowledge on SQL scripts
• An example for Python

Los Alamos National Laboratory

2/9/16 | 7

IMPLEMENTATION OF CAFlux DATA COLLECTION
ENGINE – 2 TIERS

• The 2-tier architecture for CAFlux data collection engine
• Lower level engine for core jobs - reading configurations, collecting and

caching data, and saving data
• Lower level engine designed as a daemon and developed with the Python

asyncio and threads module
• Upper level manager for monitoring the low level engine – checking the

PID file, restarting the lower level daemon process if it is dead or in zombie
status, logging error messages and sending emails if any issue happens

• The upper level manager designed and implemented as simple as possible
in order to make it more robust and stable enough for running 24 hours a
day and 7 days a week with low probability for any issues

Los Alamos National Laboratory

2/9/16 | 8

IMPLEMENTATION OF CAFlux DATA COLLECTION
ENGINE – MULTITHREADING VS ASYNCHRONOUS

• An obvious approach to use a timer thread for each PV to collect data,
to save data and then to sleep for a presetting time and wait for the next
cycle
• Large number of threads that do work a little time but sleep most of time
• Limited by resources considering CA itself creating a lot threads when the

PV volume is large
• Another approach to start a thread to do work and then to let it die after

• Hard to develop and to manage threads
• Needing a mechanism to start a thread at a presetting rate
• Complicate to synchronize the action of multiple threads and to make sure

that only one thread can access the shared resources
• Asynchronous approach only to do all the work in the main thread

• One workhorse not enough to meet a large amount of work particularly
when there are a large amount of PVs with high writing frequency

Los Alamos National Laboratory

2/9/16 | 9

IMPLEMENTATION OF CAFlux DATA COLLECTION
ENGINE – MULTITHREADING AND ASYNCHRONOUS
COMBINATION
• Global data containers synchronized for all threads

• A PV for holding all PVs unhandled and disconnected due to an
IOC down

• A PV cache keeping many thread-safe maps which contains a
hundred pairs of PV names and PV values

• A PV index mapping PV name and the PV cache index to
search which map this PV belongs to

Los Alamos National Laboratory

2/9/16 | 10

IMPLEMENTATION OF CAFlux DATA COLLECTION
ENGINE – MULTITHREADING AND ASYNCHRONOUS
COMBINATION
• The main thread

• To read inputs, initialize global data containers and start up

• To initialize CA library and create CA context

• To split new work threads

• To include an asynchronous task to check and log the health status of

each work thread at a period of few minutes and sleep in the rest of time

• Each work thread
• Have a asynchronous task loop to handle hundreds of channels in a

“parallel” manner

• Scan the PV and get a PV to work on it

• Update a PVName-val map/dict contained in the PV cache via the PV index

whenever a PV value changes

• Get a PV value from the PV cache and write it to the storage

• Set a lower priority for a channel if its status is found to be disconnected (probably due to its

IOC down) and put it back to the PV

• Do the above steps again at the presetting rate

Los Alamos National Laboratory

2/9/16 | 11

IMPLEMENTATION OF CAFlux DATA COLLECTION

ENGINE – PV MONITORS BY PYEPICS MODULE

• Creating a channel for every registered PV

• Subscribing a connection callback function to CA and called by CA

whenever a channel connection status changes

• Subscribing a PV callback function to CA to monitor PV values and

called by CA whenever PV value changes

• The PV central caches updated by the PV callback function to cache the

“current” value on the channel collection server

• CA module of PyEPICS used to save our efforts and time to wrap the

CA library and to make the implementation of the above steps easy

• Only trivial tweaks on the PyEPICS CA module for our multiple-

threading needs, i.e. customizing PyEPICS CA module

• It might not be necessary if you really know how the PyEPICS CA module
works and in this case you are completely dependent on Python GIL
mechanism.

• But those tweaks give us peace of mind(more details at Python workshop).

Los Alamos National Laboratory

2/9/16 | 12

AN ONLINE CONFIGURATION SYSTEM – A 3-TIER WEB
APPLICATION

• A replacement of the legacy configuration files and a CGI web
application

• Web browser as a platform for users to INSERT, READ, UPDATE and
DELETE configuration information

• Web site developed with Python Django web framework
• Linux HTTPD ver 2.4 used for a web server
• Apache mod_wsgi module to host the Python Django application

• Configuration database built on a MySQL server
• Not on the same InfluxDB server for the data collection since UPDATE and

DELETE functionalities needed for configuration but restricted on InfluxDB
• The IRMIS system on the same MySQL server to provide detail information

of archived PVs, e.g. their IOC information
• A tool to load existing XML configuration files into the new system

Los Alamos National Laboratory

2/9/16 | 13

AN ONLINE CONFIGURATION SYSTEM – A 3-TIER WEB
APPLICATION

• The frontend using
JQuery AJAX and
JQuery UI for a
dynamic interface
and web forms

• The backend
implementing GET
and POST methods
to handle requests
and send data

• The database
consisting of a
GROUP table and a
CHAN table with 1:n
relationship as
shown

Los Alamos National Laboratory

2/9/16 | 14

DATA RETRIEVAL AND VIEWERS

• Data retrieval using SQL-like query language shipped with InfluxDB
• With help from the Python open-source InfluxdbClient module
• Through a SELECT clause

• Online archived data viewers
• Archived data streaming to view current data stored in real time
• Archived data viewer for historical data stored

• Viewer architecture and implementation - also 3-tier web applications
• Frontend developed with plotly.js - Javascript Graphing Library and JQuery

AJAX
• Backend developed with Python Django to query data and response to

requests from web browsers
• InfluxDB to manage data sources in addition to the data collection storage

• Other free or commercial dashboards available for InfluxDB
• For example, Grafana shipped with data source plugin for InfluxDB

Los Alamos National Laboratory

2/9/16 | 15

DATA RETRIEVAL AND VIEWERS – ARCHIVED DATA
STREAMING TO VIEW CURRENT DATA STORED IN
REAL TIME

Los Alamos National Laboratory

2/9/16 | 16

DATA RETRIEVAL AND VIEWERS – ARCHIVED DATA
VIEWER FOR HISTORICAL DATA

Los Alamos National Laboratory

2/9/16 | 17

ARCHIVED DATA BACKUP AND RESTORE TO KEEP
DATA IN SAFE AND CONSISTENT STATE

• InfluxDB features for free (Not on the enterprise version)
• Data located at /var/lib/influxdb/data by default or somewhere you point

to
• Time series data under the data directory

• Meta data including user information, database and shard metadata,

subscriptions, and etc. under the meta directory

• Backup command line
• Run command “influxd backup –portable path-to-backup”

• Restore command line
• Run command “influxd restore -portable path-to-backup”

• Please refer to the manual at https://docs.influxdata.com/influxdb/v1.6
for details

Los Alamos National Laboratory

2/9/16 | 18

FUTURE WORK

• Add data analysis and statistics like averages and standard deviations
in the viewers
• With the help of the Python numpy and pandas modules

• Monitor IOC status and adjust channels in a task loop accordingly
• Remove the channels of an IOC from a task loop if its status is OFF

• Add the channels of an IOC into a task loop if its status if ON

• Improve performance and availability with clustering nodes if really
necessary
• InfluxDB OSS not support clustering

• Clustering with InfluxDB Enterprise is not free

• Develop data collection plugins for other database systems

