Open Source Event Receiver

Timing Workshop EPICS Meeting Fall 2018
Australian Synchrotron, November 2018

Jukka Pietarinen
Micro-Research Finland Oy

Open Source Event Receiver - Introduction

« What is the Open Source Event Receiver

— Basic building block required to build devices receiving the
MRF Timing protocol including but not limited to Delay
Compensation capability

« What is it not

— 1t is not a replacement firmware for current MRF products

— 1t is not a complete Event Receiver with MRF product
compatible register map

« No bus/register interface
« No pulse generators
. efc.

Open Source Event Receiver - Requirements

« Hardware

- Xilinx Kintex-7 based FPGA with GTX transceivers ONLY!
- Zynq 72030 is Kintex-7 based
- SFP Transceiver
- Reference clock for GTX
- Example design built for
« Avnet PicoZed 72030
« Avnet PicoZed FMC Carrier Card V2
« Software
— Xilinx Vivado 2017.4 (Free WebPack version is sufficient)
« Xilinx programming cable
- e.g. Platform Cable USB Il

Avnet PicoZed FMC carrier with 72030 SOM

« Avnet PicoZed AES-Z7PZ-7Z030-SOM-G
« Avnet PicoZed FMC carrier AES-PZCC-FMC-V2-G
« Zynq 72030 incorporates
 Kintex-based FPGA core
« Four GTX transceivers
« Dual-core ARM Cortex-A9
 This kit has everything from the hardware point of view to be used as an event
receiver

Mﬂ-H HIHI— IIHII

FMC BOARDIRN

Open Source Event Receiver - non-DC mode

Event Receiver in non=DC mode

loopback beacon event 0x7E
: F.‘[FO event stream I
— - .
i transceiver decoder
- —————
recovered event
clock event Ox7E l event Ox7E i
delay RX segm.
measure data butfer

DCM

phase control f

X

T'

DC target value

Reference Design Structure

zyng_top.vhd - Design top level

evr_dc.vhd - Event Receiver top level

transceiver_dc_k7.vhd - GTX Transceiver instantiation
delay _measure.vhd - Delay measurement

average.vhd
delay adjust.vhd - DCM control

databuf rx_dc.vhd - Segmented data buffer receiver

evr_pkg.vhd
buf bsram.vhd
zyng.xdc - Constraints file

Clocks, reset

Receiver signals

Transmitter signals

Delay compensation
signals

Open Source Event Receiver

— MGTREFCLKO_P/N
— MGTREFCLKI1_P/N
— sys_clk

— MGTRX_P/N

— databuf rx_ mode

— rx_clear violation

—| event_txd(7:0)
—| dbus_txd(7:0)

—| databuf_txd(7:0)
— = databuf tx_k
— = databuf tx_mode

event_clk out
event_rxd(7:0)
dbus_rxd(7:0)

databuf rxd(7:0)
databuf rx k
databuf rx_ena

rx_link ok
rx_violation

refclk out

MGTTX_P/N

databuf tx_ena

— dc_mode delay_comp_locked_out

— 1 delay_comp_update
— delay_comp_value
—| delay_comp_target

evr_dc.vhd

Event bus
Distributed bus

Databuf bus

Minimum Configuration

Connect reference clock to one reference clock input
MGTREFCLKx_P/N

Connect system clock to sys_clk

Connect transceiver receive signals to MGTRX _P/N
Tie databuf_rx_mode and databuf _tx_mode high ‘1’
Tie dc_mode low ‘0’ (non-DC mode)

Set delay _comp_target to a fixed value > 0x00050000, this value
can be used to fine tune the “group delay” of the whole EVR. In
non-DC mode this value sets depth of the EVR input FIFO.

Tie other (unused) inputs low ‘0’

Receiving Events

« Event codes are presented on event_rxd in event_clk clock
domain
« When event rxd Is not 0x00 there is an active event code

« link ok can be used to check link status

if rising_edge (event_clk) then
if event_rxd = X”01” then
—— event code X”01” received
end if;
end if;

event_clk

event_rxd 00 | o1 f 00

Receiving Distributed Bus Bits

« Distributed bus bits presented on dbus_rxd in event_clk
clock domain

« When databuf mode is enabled dbus_rxd Is updated every
other clock cycle, when databuf mode is disabled dbus_rxd is

updated every clock cycle
« link_ok can be used to check link status

Databuf bus

. Databuf bus is used to transfer data packets on databuf_rxd,
databuf rx_k, databuf ena inevent_clk clock domain

Databuf mode has to be enabled

event_clk

databuf ena

databuf_rxd [oxsc) ox01 | oxaA) o0x55 |

! ! T T

K28.2 DOL.0 DI10.5 D21.2

databuf rx_k

Sending Events

« Event codes are presented on event_txd in refclk clock
domain

« When event txd Is not 0x00 the event code is sent out on
the rising edge of refclk

refclk

event_txd 00 | o1 | 00

Open Source Event Receiver - DC mode

Delay Compensation Event Receiver

loopback beacon event Ox7E
: FIFO event stream | g
— - .
: transceiver decoder
-
© recovered event
: clock event OX7E event 0x7E
delay RX segm.
measure data buftfer
clock : T ~e L
cleaner i
segment 7F: | delay value | delay status topology 1D

phase control f

E--l

T‘

DC target value

Adding delay compensation

—= addr in(10:2) data_out(31:0) ——=

. —= clk size_data_out(31:0) ———==

BUS |nterface — reset irg_out =
rx_flag{(:127y ——=

—={ sirg_ena cs_flag(0:127) ——==

—= clear_flag ov_{lag(0:127) ——=

— databuf_rxd(7:0)
Databuf interface | Guabulrxk
—= databuf _rx_ena
—= event_clk
delay_comp_update —
delay_comp_rx(31:0) ——

i 1 delay_comp_status{31:0) ——=
Delay compensation signals topology addr(31:0) |—

databuf_rx_dc.vhd

« delay_comp_update has to be connected to
delay_comp_update of the evr_dc block

« delay_ comp_rx has to be connected to delay_ comp_value
of the evr_dc block

Building Reference Design with Vivado

Getting Sources

— @it clone htips://github.com/jpietari/mrf-openevr
Building Vivado project
- cd mrf-openevr
- vivado -mode tcl

« Vivado% source ./openevr.icl

« Vivado% quit
Synthesis/implementation/creating bitstream
- Launch vivado in GUI mode

« Vivado

— Open project openevr/openevr.xpr
— Generate bitstream
FPGA configuration

- Hardware manager
- connect to target
-~ download

https://github.com/jpietari/mrf-openevr

Reference Design Features

LEDs

- LED1 (D6), rx_violation

- LED2 (D7), link_ok

- LED3 (D8), flashed quickly on received 0x01 event code
- LED4 (D9), flashes slowly

Pushbuttons

- SW1 (N), rx_clear_violation

- SW2 (S), tx_reset

- SWB3 (E), sys_reset

The event link can be looped back to itself (connect fiber patch cable from SFP TX to
SFP RX)

- however due to GTX internals and running the transmitter and receiver from the
same clock source you will need to press tx_reset several times before link gets
established, this applies only to self-loopback. Theoretically, chances of
establishing link is 1/20% resets.

Sending out event code 0x01 at a fixed rate, few Hz, received event shows on LED3
(D3)

Two integrated logic analyzer (ILA) cores instantiated

Avnet PicoZed FMC Carrier V2 Board Reference Clock

« Avnet PicoZed FMC Carrier V2 has a programmable IDT 8T49N242
clock synthesizer.

— Configuration resides on an EEPROM

- Reference design available from Avnet to program EEPROM
« Software Tools

— IDT Timing Commander

- IDT 8T49N24x Timing Commander Personality File

- Xilinx Vivado and SDK 2015.4 (exact version required)
« Getting Sources

— http://picozed.org/support/design/13076/106

- Transceiver Clock Programming Reference Design

http://picozed.org/support/design/13076/106

IDT Timing Commander

@y IDT Timing Commander - C:\Users\jpietar\FMCV2\IDT8T49N242_20150326_095422.tcs = |]

IDT8T49N242 | (EEPROM)

TT.T6MH=z
QD Freguency (MHz)

3571428 &

35.71428MHz

___ Input Frequency 0 (MHz) 2 i —_— 21 Frequency (MHz)

142,857 &

VGO Freq:

VCO Fraction:

44 0817037
___ Input Frequency 1 (MHz)

Q3 Frequency (MHz)
35.71428
35.71428MHz

IDT Timing Commander

'ﬁjriest —_Notepad | =R |-$-"'Vh]1

File Edit Format View Help

FF FF FF FF FF FE EF 00
03 00 30 00 00 01 00 00
01 07 00 00 OF 00 00 77
6D 00 00 Q0 00 00 00 FF
FF FF FF 01 2F 00 2C 00
02 EF 3D 00 01 00 00 DO
00 00 00 00 00 00 00 00
00 OF 00 00 00 &4 66 02
00 03 01 00 05 02 00 03
02 00 OC 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 Q0 00 00 00 00
00 00 00 00 00 00 00 00
&9 0Aa 2B 20 00 00 0O 0O
00 00 00 00 00 00 00 00
00 00 27 00 00 00 00 00
00 00 00 00 DA

L

Copy table as a new configuration to file
C:\Avnet\hd\Projects\pz_fmc2_valtest\software\pzcc_iic_eeprom_test\src\iic_eeprom_demo.c
Follow instruction in PizoZed FMC2_Carrier _IDT_Clock Programming_RefDes 2015 4.pdf

Evaluation Board Reference Clock

« Launch Vivado 2015.4
- Open Project C:/Avnet/hdl/Projects/pz_fmc2 valtest/PZ7030 FMC2
- Generate Bitstream

« Launch SDK 2015.4

- Select Workspace C:\Avnet\hdl\Projects\pz_fmc2_valtest\PZ030_FMC2\
pz_fmc2_valtest.sdk

— Xilinx Tools -> Program FPGA, Click Program
- Right-click pzcc_lic_eeprom_test
« Run as -> Run Configurations
— Click on Application tab
- Search: pzcc_iic_eeprom_test.elf
- Apply, Run

../../../C:/Avnet/hdl/Projects/pz_fmc2_valtest/PZ7030_FMC2

Further developments

« Adding more “bits and pieces” as configurable “plugins”
— timestamping?
- pulse generators?
- bus interface for CPU access?

« Main idea is still to keep it as simple as possible

« VHDL is not a very convenient language for configurable
designs - you have to use generate statements - no #ifdefs

Further developments (2)

« Meeting with PSI in September
« Requests:

- Isolate the FPGA dependent part (MGT, Delay compensation
adjustment) from the EVR core to allow easier porting to
different platforms

- Standardize interface between MGT and EVR core
« Modular approach

— To allow easy integration of custom logic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

