

Introduction to **Neutron imaging**

Floriana Salvemini

Science. Ingenuity. Sustainability.

Outline

- Introduction to the method
- How image is formed
- Computed tomography
- Instrument components
- Case studies

What is imaging?

We have a solid item to investigate

- 1. Take a first look of the outside
- 2. Use a transmission image
- 3. Cut the item in pieces ... virtually

Interaction with matter

Neutron imaging techniques

Radiography Tomography Real-time imaging Stroboscopic imaging

Resonance capture analysis

Energy-selective imaging Grating interferometry

NSTO

Transmission Image

Object

Beer-Lambert law

 $I(\lambda) = I_0(\lambda)e^{-\sum_i(\mu(\lambda)d)_i}$

 $I(\lambda)$ - transmitted intensity of a monochromatic beam $I_0(\lambda)$ - incident intensity d - path length $\mu(\lambda)$ - total linear attenuation coefficient $\mu(\lambda) = \sigma_t(\lambda) \frac{\rho N_A}{M}$

 $\sigma_t(\lambda)$ - total cross-section ρ - density N_A - Avogadro's number M – atomic mass

Neutrons vs X-ray

Neutrons

Neutrons

1a	2a	3b	4b	5b	6b	7b		8		1b	2b	3a	4a	5a	6a	7a	0	transmitted
н																	He	
3,44																_	0.02	
LI	Be											В	C	N	0	F	Ne	
3.30	0.79											101.60	0.56	0.43	0.17	0.20	0.10	
Na	Mg											AI	Si	P	S	CI	Ar	
0.09	0.15			-				-		_	75	0.10	0.11	0.12	0.06	1.33	0.03	nucleus
K	Ca	Sc	TI	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61	
Rb	Sr	Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe	
0.08	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.11	7.58	0.21	0.30	0.25	0.23	0.43	scattering
Cs	Ba	La	Hr	Ta	W	Re	Os	lr.	Pl	Au	Hg	TI	Pb	Bi	Po	At	Rn	
0.29	0.07	0.52	4.99	1.49	1.47	6.85	2.24	30.46	1,46	6.23	16.21	0.47	0.38	0.27				
Fr	Ra	Ac	Rf	Ha						1	· · · · · · · · · · · · · · · · · · ·							
-	0.34	-	1		-	-	-	-	-	-	-	-				-		Pros Cons
			-						_	-					-	_	-	
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu				 High penetration power Acquisition time
*Lanthanides	0.14	0.41	1.87	5.72	171.47	94.58	1479.04	0.93	32.42	2.25	5.48	3.53	1.40	2.75			_	
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	· · · · ·	-	-	
**Actinides	0.59	8.46	0.82	9,80	50.20	2.86			-						6			Non-invasive method Post-experiment radioactivity
X-rav																		
1a	2a	3b	4b	5b	6b	7b	. A	8		1b	2b	3a	4a	5a	6a	7a	0	transmitted

Computed Tomography

Credit: https://www.psi.ch/media/x-ray-and-neutron-imaging-for-palaeontologists-and-archaeologists

ANSTO

Computing a transmission Image

Beer-Lambert law for each pixel of the 2D detector

Eliminate incident beam intensity variation (I_0) and camera intensity offset (DC) to get transmission image (T)

Hymanhealth.iaea.org Image reconstruction: M. Strobl, et al., Journal of Physics D Applied Physics · 2009 The Radon Transform and the sinogram

intensity profile:

Approximations:

- Parallel and monoenergetic beam •
- Interactions outside the sample . and scattered neutrons are not taken into account.

The Radon transform of the onedimensional projections $P\theta$ (t) of single slices at angles θ can be formulated as

$$P_{\theta}(t) = -\ln \frac{I_{\theta}(t)}{I_0(t)} = \int_{\operatorname{ray}(\theta,t)} \mu(x, y) \cdot ds$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta_D(x \cos \theta + y \sin \theta - t)$$
$$\times \mu(x, y) \cdot dx \, dy,$$

where t = x cos θ + y sin θ and is perpendicular to the rotation axis.

Filtered-back projection Radon transform

Sinogram

Reconstructed image

Filtered Back Projection

Rho (offset)

The **Fourier slice theorem** states that the onedimensional Fourier transform P θ (ω) of the projections P θ (t) of the two-dimensional function $\mu(x, y)$ is equal to the two-dimensional Fourier transform S(u, v) of the slice $\mu(x, y)$. Consequently, an infinite number of projections will fill the whole Fourier space and enable a perfect reconstruction of $\mu(x, y)$ by the back transformation

$$\mu(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(u, v) \cdot e^{2\pi i (ux + vy)} \cdot du \, dv$$
$$= \int_{0}^{\pi} \int_{0}^{\infty} \left(\int_{-\infty}^{\infty} P_{\theta}(t) \cdot e^{-2\pi i \omega t} \cdot dt \right)$$
$$\times e^{2\pi i (x \cos \theta + y \sin \theta)} \cdot |\omega| \cdot d\omega \, d\theta,$$

where $|\omega|$ results from the transformation into polar coordinates (u, v).

$$Q_{\theta}(t) = \int_0^{\infty} P_{\theta}(\omega) \cdot e^{2\pi i (x \cos \theta + y \sin \theta)} |\omega| \cdot d\omega$$

This function is called a filtered projection where $|\omega|$ can be considered to be a ramp filter.

How many projections are needed?

The number of projections is determined by the Nyquist-Shannon sampling theorem

Reconstructed image

Percent backprojected **5 %** from selected angles

Sinogram

 $N=\frac{\pi}{2} M$

N= number of projectionsM=Number of pixels in the direction perpendicular to the axis of rotation

Filtered Back Projection

Rho (offset)

When the analytical solution has problem

The unit circle in the Fourier domain must be filled

Iterative methods

Pros

Spare, irregular, sampled projection data Physical model can be included

Cons

Require *a piori* knowledge for best performance Time consuming

https://www.fei.com/WorkArea/DownloadAsset.aspx?id=25769803898

Image processing

SIMULATION

3D SURFACE & MESH GENERATION

ANSTO

Software for data reconstruction and analysis

Preliminary data treatment and filtering

ImageJ FIJI MATLAB – Image processing toolbox ImageMagick

Tomographic reconstruction

Octopus X-tract MATLAB – Image processing toolbox Exploring free-software i.e. *MuhRec, iMARS, CTAS*

Visualization and analysis

VG Studio MAX Drishti AVIZO (FEI) Slicer3D ParaView

Instrument components

Collimation geometry L/D L: collimator length D: the diameter of the inlet aperture of the collimator on the side facing the source I: sample to detector distance

Effect of L/D on resolution

ANSTO

Pierre Boillat – PSI - Introduction to Neutron Imaging

Effect of / on resolution

The measurements are performed at FRM-I, TU-München by B. Schillinger Source: 32nd Berlin School on Neutron Scattering, March 8-16, 2012

Spatial and Temporal Resolutions of Imaging Technologies

0.1 Å 5Å 100 nm 10 µm to 1 mm 1 nm 5 nm 10 nm 50 nm 500 nm 1 µm 10 fs 100 fs X-ray Free-Electron Laser Ultrafast X-ray Diffraction 1 ps 10 ps Synchrotron Time-Resolved SAXS/WAXS 100 ps **Temporal Resolution** Fluctuation Scattering 1 ns Synchrotron X-ray Macromolecular 10 ns Crystallography 100 ns **Dynamic TEM** 1 µs • Single Molecule Neutron Macromolecular 10 µs Tracking Crystallography 100 µs • TIRF **Super-Resolution Fluorescence** 1 ms Confocal Microscopy • Cryo-TEM Single Particle Cryo-TEM Coherent Raman 10 ms Tomography Electron Crystallography Micro-Electron 100 ms Diffraction **Synchrotron Transmitted X-ray** 1 s **Small Angle** Synchrotron XANES Neutron **Microscopy and Tomography Neutron Scattering/** Synchrotron EXAFS 10 s Radiography USANS 100 s Synchrotron FTIR Nanoscopy and Tomography **Scanning Probe Ptychography** and 1 ks Microscopy Tomography Nano-SIMS In Soil Sensors Focused Ion Beam/SEM 10 ks

Spatial Resolution

Neutron Imaging beamline in the world

The neutron imaging beamline DINGO

DINGO specs

Technical details

- Ikon-I CCD, NEO CMOS camera
- Two Zeiss macro lens (50mm and 100mm)
- Three beam sizes 200 x 200, 100 x 100 and 50 x 50 mm²
 - Pixel size 10 100 μm
 - 25fps fast imaging under development

Applications overview

Energy

Civil engineering

Earth & Planetary Science

Agriculture & Food

Industrial manufacturing

Biology and Medicine

Novel Measurement of Bed Voidage in Softening and Melting under Load Test

Ferrous material

Xinliang Liu, et al., ISIJINT, 2018, 257

Costerfield antimony-gold deposit, southeast Australia: Coupling between brittle deformation and dissolution-precipitation reactions in the Melbourne Zone

Phase	Composition	Σ [cm^-1] at 1.08 Å	Colour code
stibnite	Sb ₂ S ₃	0.14	
galena	PbS	0.19	n ⁻¹]
antimony	Sb	0.23	[cu
sphalerite	(Zn,Fe)S	0.26	ent 2
quartz	SiO ₂	0.28	fficie
pyrite	FeS₂	0.40	coe
muscovite	KAI ₂ (Si ₃ AI)O ₁₀ (OH,F) ₂	0.82	ition
biotite	K(Mg,Fe++) ₃ [AlSi ₃ O ₁₀ (OH,F) ₂	0.85	enua
arsenopyrite	FeAsS	0.95	atte
gold	Au	3.95	

ANSTO

Neutron scanning reveals unexpected complexity in the South Australian **Museum** enamel thickness of an herbivorous Jurassic reptile ATURE&SCIENCE

DENVER MUSEUM OF

THE UNIVERSITY

Eilenodon (Rhynchocephalia) Jurassic Morrison formation North America

ANSTO

Marc E. H. Jones, et al., 2018, J. R. Soc. Interface 15: 20180039

Final remarks

Neutron Imaging techniques as a tool to investigate matters

Technical advantages	Materials
 From micro- to macro- scale Bulk measurements Experiment can be designed 	 Metals Ceramics Fossils Organic materials
Typical Investigations	Outcome
 Documentation Identification of defects and inclusion Structural and Morphological bulk analysis Characterization of manufacturing technology Quality control 	 Statistical analysis Spatial map 3-D rendering and visual inspection Surface and mesh generation Modelling and simulation
Non-invasive and non-destruct	ive analyses

Thank you

