

Biomolecules

Dr Katy Wood

Australian Centre for Neutron Scattering kwo@ansto.gov.au

Science. Ingenuity. Sustainability.

SMALL ANGLE SCATTEIRNG

Small Angle Scattering at ANSTO

Proteins

Proteins seen by small angle scattering

Typical small angle scattering data

Structure reconstruction from small angle data – DAMMIF from ATSAS suite

ANSTO

Proteins seen by small angle scattering

Protein 'seen by' X-ray crystallography

Protein 'seen by' Small Angle Scattering

Why do protein small angle scattering?

- Is the crystal structure representative?
- What is the oligomerisation state?
- Do proteins interact in solution?
- What happens when we change conditions (eg salt, ligand, temperature, pH...)

X-rays & Neutrons

- Flux orders of magnitude X-rays>> neutrons
- Neutrons: no radiation damage, contrast variation

Before you start: Jeffries et al. (Nat Protoc (2016) 11(11): 2122-2153) Trewhella et al. (Acta Cryst D. (2017) 73 (9):710-728)

Neutrons / X-rays Scattering Lengths

Interact with nucleus not atomic cloud

Optical contrast

Neutrons Scattering Length Densities & Contrast

Mulch! Whitten et al. (J Appl Crystallogr 2008 41, 222-226)

Neutrons & 'contrast matching'

Studying protein interactions – SANS & Contrast Matching

ATSAS package – EMBL Hamburg

ANSTO

Furlong *et al.* J Biol Chem (2018)

Example of kinetic protein SANS

Rintaro Inoue

Masaaki Sugiyama

α -Crystallin – structural protein of mammalian eyes

Schematic view of α -B-crystallin 26-mer:

Subunit exchange by contrast matching

Hydrogenated α -B-crystallin

Deuterated α -B-crystallin

Invisible in 40% D₂O

Invisible in D_2O

Inoue et al. (2016) Nat Sci Reports 6: 29208

Subunit exchange by contrast matching

Hydrogenated α -B-crystallin

Deuterated α -B-crystallin

50/50 mixture matched out at 82% D_2O

Inoue et al. (2016) Nat Sci Reports 6: 29208

Hydrogenated & deuterated a-B crystallin

Time resolved Small Angle Neutron Scattering (QUOKKA)

Time dependence of exchange

Mechanism of subunit exchange?

Liposomes

Determining *T_m*: Differential Scanning Calorimetry

2 types of liposomes prepared:

- Uncharged (90% DMPC, 10% DMPG)
- Charged (50% DMPC, 50% DMPG)

SANS results – 'Uncharged' liposomes

ANSTO

l(q)

Membrane thickness from SANS data

Liposome radius from SANS data

Hydration water

Svergun et al. PNAS 95 1998 2268-2272

SAXS, SANS in H_2O , SANS in D_2O -> proteins have a hydration shell 5-20 % more dense than bulk

Kim et al. Biophys J 110 (2016) 2185-2194

REFLECTIVITY

Acknowledgments

Monash University:

Mei-Ling Han (AINSE PGRA) Hsin-Hui Shen Seong Hoong Chow Jian Li Tony Velkov

ANSTO

Anton le Brun

Publications: M.-L. Han et al., ACS Chemical Biology (2018) **13:** 121

The Gram-negative cell envelope and the outer membrane

From: N Ruiz, D Kahne & TJ Silhavy Nature Reviews Microbiology 2006, **4**:57-66

Anton le Brun

ANSTO

Lipid A

Hexa-acylated lipid A

Penta-acylated lipid A Deacylation mediated by *pagL* in the Gram-negative bacterium *Pseudomonas aeruginosa* confers Polymyxin B resistance

Anton le Brun

Preparing the membrane models

Langmuir-Blodgett and Langmuir-Schaefer dipping

Anton le Brun

Model membranes of the OM

Anton le Brun

INELASTIC

Protein dynamics & energy landscape

Timescales accessible by neutron scattering

From: www.neutron.neutron-eu.net

Protein dynamical transition

Doster et al. (1989) Nature 337, 754-756

Neutron spectroscopy & 'elastic scans'

 \mathbf{O}

Dry/Hydrated protein neutron scattering

Wood et al. (2008) Chem Phys 345, 305 - 314

Contribution to the scattering & samples

Neutron Incoherent Scattering Cross Sections drawn to scale

Hydrated powder samples

~ 0.4 g D_2O / g protein D_2O H-protein \rightarrow Protein dynamics

Water example 1 – protein hydration water

Proteins 'Slaves' to the water?

Fenimore et al. (2004), Proc Natl Acad Sci USA, 101,14408

ANSTO

Tsai et al. (2000) Biophys J 130, 2728 - 2732

Maltose Binding Protein (MBP): samples

Labelling Strategy D_2O **MBP** 40 kDa H_2O Water MBP

ILL G Zaccai, M Moulin, M Haertlein

IBS: A Frolich, M Weik U of Perugia: A Paciaroni

Maltose Binding Protein (MBP): neutron scattering

Wood *et al.* (2008) J Am Chem Soc **130**, 4586-4587

Water example 2 – water dynamics in cells

Deuterated cells, H₂O - Deuterated cells, D₂O

ILL/IBS Grenoble: M Jasnin, M Moulin, M Haertlein, G Zaccai, M Tehei.

E. Coli cell, from Goodsell (2009) *Biochem and Mol Bio Edu*, 37, 325-332

Quasi-elastic neutron measurements

IRIS - ISIS, UK & IN6 - ILL, France

ANSTO

Jasnin *et al.* (2008) *EMBO J*, 9, 546

Interpreting QENS data

ANSTO

Quasi-elastic neutron measurements

IRIS - ISIS, UK & IN6 - ILL, France

"Jump diffusion model"

$$\Gamma_T = \frac{D_T Q^2}{1 + D_T Q^2 \tau_0}$$

Water in E. Coli cells

$$D_T = 1.5 \times 10^{-5} cm^2 s^{-1}$$

Buffer

 $D_T = 1.7 \times 10^{-5} cm^2 s^{-1}$

NSTO

Jasnin et al. (2008) EMBO J, 9, 546

Water example 2 - conclusion

Significant amount of water has similar properties to bulk

E. Coli cell, from Goodsell (2009) Biochem and Mol Bio Edu, 37, 325-332

DIFFRACTION EXAMPLE: WATER-DNA INTERACTIONS

Water-DNA interactions

A-DNA

B-DNA

C-DNA

D-DNA

Z-DNA

right-handed 11 base pairs per turn pitch = 28.2 Å right-handed 10 base pairs per turn pitch = 34 Å right-handed 9.3 base pairs per turn pitch = 31 Å right-handed 8 base pairs per turn pitch = 24.2 Å left-handed 12 base pairs per turn pitch = 43 Å

Fuller W, et al. (2004) *Philos Trans R Soc Lond B Biol Sci* **359**(1448): 1237-1247; discussion 1247-1238

Water-DNA interactions

Fuller W, et al. (2004) *Philos Trans R Soc Lond B Biol Sci* **359**(1448): 1237-1247; discussion 1247-1238

National Deuteration Facility, ANSTO

