

SANS and USANS

Mitsuhiro Shibayama Institute for Solid State Physics (ISSP) The University of Tokyo

Acknowledgement: 1) Modified from Lecture from the NCNR Summer School on Neutron Small Angle Scattering and Reflectometry from Submicron Structures 2) AONSA Summer School on Neutron small angle scattering and reflectometry August 18 – 22, 2008

- **1. Introduction**
- 2. Basic theory
- 3. Dilute systems
- 4. Concentrated/bulk systems
- 5. Applications
- 6. Summary and references

Contents

1. Introduction

- 2. Basic theory
- 3. Dilute systems
- 4. Concentrated/bulk systems
- **5. Applications**
- 6. Summary and references

Size-hierarchy relationship of matter

M. Shibayama, in Neutron Scattering Applications in Chemistry, Materials Science and Biology, Fernandez-Alonso, F. and Price, D. L. Eds., Academic Press, 2017

Towards Nanometer Technology

Courtesy of S. Choi, KAIST

Natural

Information obtained by small-angle

scattering experiments

Methods of nano-structure characterization

SEM

AFM

Light scattering mesoscopic structure, size distribution

X-ray scattering (lab.): easy, weak intensity (SOR): limited-machine time, radiation damage

Neutron scattering limited-machine time, low resolution (SANS), large contrast (H/D, magnetic)

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Why Neutrons ?

1. Introduction

2. Basic theory

- 3. Dilute systems
- 4. Concentrated/bulk systems
- **5. Applications**
- 6. Summary and references

Young's Double Slit Experiment

Neutron Scattering

Young's Experiments with Neutron Wave and Atoms

Scattering by Many Nuclei

The scattered wave from many nuclei located at \vec{R}_i

$$\psi_{scat} = \sum_{i} e^{i\vec{k}_{in}\cdot\vec{R}_{j}} \frac{-b_{j}}{\left|\vec{r}-\vec{R}_{j}\right|} e^{i\vec{k}_{out}\cdot(\vec{r}-\vec{R}_{j})} = e^{i\vec{k}_{out}\cdot\vec{r}} \sum_{j} \frac{-b_{j}}{\left|\vec{r}-\vec{R}_{j}\right|} e^{-i(\vec{k}_{out}-\vec{k}_{in})\cdot\vec{R}_{j}}$$
(1) Scattering cross-section

Therefore

$$\frac{d\sigma}{d\Omega} = \frac{\mathbf{v} |\psi_{scat}|^2 dS}{\mathbf{v} d\Omega} = \frac{dS}{d\Omega} \left| e^{i\vec{k}_{out} \cdot \vec{r}} \sum_{j} \frac{b_j}{\left|\vec{r} - \vec{R}_j\right|} e^{-i(\vec{k}_{out} - \vec{k}_{in}) \cdot \vec{R}_j} \right|^2$$

If we measure far enough away so that
$$r \gg R_i$$
, then $\left| \vec{r} - \vec{R}_i \right| \approx r$ $d\Omega = \frac{dS}{r^2}$
$$\left| \frac{d\sigma}{d\Omega} = \left| \sum_j b_j e^{-i\vec{Q}\cdot\vec{R}_j} \right|^2 = \sum_{i,j} b_i b_j e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} \left| e^{i\vec{k}_{out}\cdot\vec{r}} \right|^2 = 1$$

where the wavevector transfer \vec{Q} is defined as

 $\vec{Q} = \vec{k}_{out} - \vec{k}_{in}$ (2) Scattering vector

14

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Scattering vector Q

(2) Scattering vector

Scattering vector Q

(2) Scattering vector

For elastic scattering

Note: The dimension of Q = 1/Length

$$Q = \frac{2\pi}{d} \quad \text{or} \quad d = \frac{2\pi}{Q}$$

(1) Scattering cross-section

Differential Neutron Scattering Cross-Section

$$\frac{d\sigma}{d\Omega}(\vec{\mathbf{Q}}) = \left\langle \left| \sum_{j} b_{j} e^{-i\vec{\mathbf{Q}}\cdot\vec{R}_{j}} \right|^{2} \right\rangle$$

- σ = total scattering cross section
- $\Omega =$ solid angle
- \vec{Q} = scattering vector
- b_j = coherent scattering length of atom j \vec{R}_j = position of atom j

Neutron Scattering : Fourier Transform

(1) Scattering cross-section

Differential scattering cross-section

$$\frac{d\sigma}{d\Omega}(\vec{Q}) = \left\langle \left| \sum_{j} b_{j} e^{-i\vec{Q}\cdot\vec{R}_{j}} \right|^{2} \right\rangle$$

Dirac delta function $\int \delta(\vec{r}) d\vec{r} = 1$ $\int f(\vec{r}) \delta(\vec{r} - \vec{R}) d\vec{r} = f(\vec{R})$

 $n(\vec{r}) = \sum_{j} \delta(\vec{r} - \vec{R}_{j}) : \text{Atomic number density}$ $\rho_{\text{sld}}(\vec{r}) = \sum_{j}^{j} b_{j} \delta(\vec{r} - \vec{R}_{j}) : \text{Scattering length density}$ $\text{F.T.}\{\rho_{\text{sld}}(\vec{r})\} = \int \rho_{\text{sld}}(\vec{r})e^{-i\vec{Q}\cdot\vec{r}}d\vec{r} = \int \sum_{j} b_{j}\delta(\vec{r} - \vec{R}_{j})e^{-i\vec{Q}\cdot\vec{r}}d\vec{r} = \sum_{j} b_{j}e^{-i\vec{Q}\cdot\vec{R}_{j}}$

$$\frac{d\sigma}{d\Omega}(\vec{Q}) = \left\langle \left| \int \rho_{sld}(\vec{r}) e^{-i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^2 \right\rangle$$

18

Scattering Length

(3) Scattering length

Neutron Interaction Potentials

Nuclear Interaction (Neutron-Nucleus)

Magnetic Interaction (Neutron-Unpaired Electron)

$$V_{N}(\mathbf{r}) = \frac{2\pi\hbar^{2}}{m_{n}} b_{N} \delta(\mathbf{r})$$
$$V_{M}(\mathbf{r}) = -\mathbf{\mu} \cdot \mathbf{B}(\mathbf{r})$$
B-field induced unpaired

spin

19

Magnetic moment of neutron

Scattering Length Density

(3) Scattering length

Scattering length density, ρ

 b_j = bound coherent scattering length of atom j

 \overline{V} = volume containing the *n* atoms

Contrast variation

- bound coherent scattering length (10⁻¹³ cm) $b_{\rm H}$ = -3.749 fm $b_{\rm D}$ = 6.671 fm

Calculation of scattering lengths

(3) Scattering length

http://www.ncnr.nist.gov/resources/n-lengths/

Ex. benzene C_6H_6

$$b \equiv b_{molecule} = \sum_{i} r_i b_{atom,i}$$

$$b_{\text{benzene}} = 6b_H + 6b_C$$

= 6 × (-3.739 × 10⁻¹³) + 6 × (6.646 × 10⁻¹³)
= 17.442 × 10⁻¹³ [cm]

Isotope	conc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs	
	%	fm (=10 ⁻¹³ cm)	fm	barn(=10 ⁻²⁴ cm ²)	barn	barn	barn	
						Scattering		
		Coh. Scatt.	Inc. scatt.	Coh. Cross	Inc. cross	cross	Absorption	
isotope	Conc.	length	length	section	section	secdtion	cross section	
н		-3.739		1.7568	80.26	82.02	0.3326	
¹ H	99.985	-3.7406	25.274	1.7583	80.27	82.03	0.3326	
² H	0.015	6.671	4.04	5.592	2.05	7.64	0.000519	
с		6.646		5.551	0.001	5.551	0.0035	
N		9.36		11.01	0.5	11.51	1.9	
0		5.803		4.232	0.0008	4.232	0.00019	

 $\sigma_{\rm coh}$

Q: Calculate the scattering lengths of light (H₂O) and heavy (D₂O) waters²¹

b

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

 $\sigma_{\rm inc}$

 $\sigma_{\rm s}$

 σ_{a}

	http://www.ncnr.nist.gov/resources/n-lengths/														
NIST Center for Neutron Research											NIST Mentionel Institute of Mendiorids and Technology				
Home	Iome ICP Experiments				UserProposal				Instruments			SiteMap			
	Neu	itron	S	cat	tering I	lengt	hs	an ar	d cr	oss	sect	ion	S		
) Scatt	tering len	igth	Η \			(r				100	18				
	LI Be						N	eutror	scatter	ring leng	gths and	d cross	s sections	3	
			Na N	13	le la	Isotope		onc	Coh b	Inc b	Coh xs	Inc xs	Scatt xs	Abs xs	
			K C	a Sc	TI V Cr Min	н			-3.7390		1.7568	80.26	82.02	0.3326	
			0 h 4		71 10 110 70	1H	99	.985	-3.7406	25.274	1.7583	80.27	82.03	0.3326	
			ma a			2H	0.0	15	6.671	4.04	5.592	2.05	7.64	0.000519	
			CE B	a La	Ht Ta W Re	зн	(12	2.32 a)	4.792	-1.04	2.89	0.14	3.03	0	
			Fr B	a Ac	Cal Pr. Na	Column	olumn Linit Ouentitu								
								Isotope							
					7h Fa U	Natural abundance (For radioisotopes the half-life is given in						iven instea			
						3	fm	bound coherent scattering length							
NOTE: The above are only thermal neutron cross section dependent cross sections please go to the National Nucleonal					4	fm	bound incoherent scattering length								
Select the element, and you will get a list of scattering I Feature section of neutron scattering lengths and cross No. 3, 1992, pp. 29-37. The scattering lengths and cross sections only go throu						5	barn bound coherent scattering cross section								
						6	barn	arn bound incoherent scattering cross section							
						7	barn	rn total bound scattering cross section							
						8	barn absorption cross section for 2200 m/s neutrons								
Along	table with the	complete	listr	t ele.	Note: 1fm=1E-15	im, 1barn=	1E-2	4 cm^2,	scattering	lengths a	nd cross s	sections	in parenthes	sis are uncer	

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Neutron contrast

H₂O Contrast matching

labeling

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Coherent and Incoherent Scattering

The scattering length, b_i , depends on the nuclear isotope, nuclear spin relative to neutron spin. For a single nucleus, Random fluctuation due to isotope and spin

$$b_{i} = \langle b \rangle + \delta b_{i} \qquad \text{where } \delta b_{i} \text{ averages to zero}$$
$$b_{i}b_{j} = \langle b \rangle^{2} + \langle b \rangle (\delta b_{i} + \delta b_{j}) + \delta b_{i} \delta b_{j}$$

Note:
$$\langle \delta b_i \rangle = 0$$
 and $\langle \delta b_i \delta b_j \rangle = 0$ unless $i = j$
If $i \neq j$, $\langle b_i b_j \rangle = \langle b \rangle^2$
If $i = j$, $\langle b_i b_j \rangle = \langle b_i^2 \rangle = \langle b^2 \rangle = \langle b \rangle^2 + \langle \delta b_i^2 \rangle \quad --> \langle \delta b_i^2 \rangle = \langle b^2 \rangle - \langle b \rangle^2$

Therefore,

$$\langle b_i b_j \rangle = \langle b \rangle^2 + \delta_{ij} \left(\langle b^2 \rangle - \langle b \rangle^2 \right) \qquad \left(\frac{d\sigma}{d\Omega} \right)_{scatt} = \left(\frac{d\sigma}{d\Omega} \right)_{Coh} + \left(\frac{d\sigma}{d\Omega} \right)_{Inc}$$

$$\frac{d\sigma}{d\Omega} = \left\langle \sum_{i,j} b_i b_j e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} \right\rangle = \sum_{i,j} \left\langle b_i b_j \right\rangle e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} = \left\langle b \right\rangle^2 \sum_{i,j} e^{-i\vec{Q}\cdot(\vec{R}_i - \vec{R}_j)} + N\left(\left\langle b^2 \right\rangle - \left\langle b \right\rangle^2\right)$$

Coherent scattering Incoherent scattering - scattering depends on Q 24 - contains structural information Lecture note: M. Shibayama, AONSA Neutron School, Nov. 2018

1. Introduction

2. Basic theory

3. Dilute systems

- 4. Concentrated/bulk systems
- **5. Applications**
- 6. Summary and references

Scattering from Dilute, Homogeneous Particles

$$\frac{d\Sigma(\vec{Q})}{d\Omega} = \frac{1}{V} \left| \int_{V} \rho(\vec{r}) e^{i\vec{Q}\cdot\vec{r}} d\vec{r} \right|^{2}$$

SANS from oriented dilute particles

$$I(\vec{Q}) \propto \left| F(\vec{Q}) \right|^2 = \left| \frac{1}{v_p} \int_{v_p} e^{i\vec{Q}\cdot r} d\vec{r} \right|^2$$

T.

 $I(\vec{Q})$ probes structure in direction of \vec{Q}

SANS from randomly oriented particles

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Guinier Radius, R_a

Guinier Radius, RG

- rms distance from "center of scattering density"

1) Spherical Particles

2) Cylinders (Rods or Disks)

Guinier Radius, R_q

4) Gaussian chain

$$R_G^2 = \frac{1}{6}\overline{L^2} \quad \overline{L^2} = \frac{1}{6} \operatorname{average square of}$$
the end-to-end distance

Guinier Approximation

$$I(0) \propto \frac{d\Sigma(0)}{d\Omega} = \frac{1}{V} \left(\int_{V} \rho(\vec{r}) d\vec{r} \right)^{2}$$

 $= \frac{N}{V} (\rho_{p} - \rho_{o})^{2} V_{p}^{2} - \frac{1}{V_{p}} \text{ for N uniform particles}$ in volume, V, each with sld ρ_{p} and volume, V_p

Expressing in terms of c (molecular concentration) [mg/ml] = $\frac{N\rho V_p}{V}$ M_W (molecular weight)= $\rho V_p N_A$

$$\frac{d\Sigma(0)}{d\Omega} = \frac{c M_{w}}{\rho N_{A}} (\rho_{p} - \rho_{o})^{2} \qquad N_{A} = \text{Avogadro's number}$$

$$\rho = \text{mass density}$$

Particles having a size distribution

 $I(Q) \propto \int N(R) \frac{V_p^2(R)}{\nabla} |F(Q,R)|^2 dR$ Weighed by the square of the particle volume!

N(R) - Number of Particles (Spheres) with Radius R

V_p(R) - Particle Volume

Guinier Plots of Scattering from Spherical Particles with mean radius, R_o = 100 Å, and a Gaussian Size Distribution.

Form Factors for Simple Particle Shapes

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Form Factors for rods

36

Form Factors for thin discs

Spherical Core-Shell

- **1. Introduction**
- 2. Basic theory
- 3. Dilute systems

4. Concentrated/bulk systems

- **5. Applications**
- 6. Summary and references

Interparticle Interference Effects

Scattered Intensity:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = \frac{1}{V} \sum_{k=1}^{N_p} \left\langle \left| f_k(\vec{q}) \right|^2 \right\rangle + \frac{1}{V} \left\langle \sum_{\substack{k=1 \ j=1 \\ j \neq k}}^{N_p} f_k(\vec{q}) f_j^*(\vec{q}) e^{i\vec{q}\cdot\left(\vec{r}_k - \vec{r}_j\right)} \right\rangle$$

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Interparticle Interference Effects

Scattering Amplitude (Intraparticle):

$$f_{k}(\vec{q}) = \int_{\text{particle } k} [\rho_{k}(\vec{r}) - \rho_{\text{solv}}] e^{i\vec{q}\cdot\vec{r}} d\vec{r}$$

 $P(q) = \langle |f_k(q)|^2 \rangle$ the "Form Factor"

The Structure Factor

For monodisperse spheres:

$$\frac{d\Sigma}{d\Omega}(\vec{q}) = n_p \left\langle |f(q)|^2 \right\rangle \begin{cases} 1 + \left\langle \sum_{\substack{k=1 \ j=1 \ j\neq k}}^{N_p} e^{i\vec{q}\cdot(\vec{r}_k - \vec{r}_j)} \right\rangle \\ \frac{d\Sigma}{d\Omega}(\vec{q}) = n_p P(q) \cdot S(\vec{q}) \end{cases}$$

If isotropic, we can average over orientation:

$$\langle \mathbf{S}(\vec{q}) \rangle = \mathbf{S}(q) = 1 + 4\pi n_p \int_{0}^{\infty} \left[g(r) - 1 \right] \frac{\sin qr}{qr} r^2 dr$$

Note:

- S(q) is proportional to the number density of particles
- S(q) depends on g(r), the pair correlation function

The Pair Correlation Function

- n_pg(r) is a "local" density of particles
- Spatial arrangement set by interparticle interactions and indirect interactions

S(q) and Statistical Thermodynamics

The form of the interparticle potential has <u>a great effect on</u> the low q value of S(q)

The low q limit is proportional to the osmotic compressibility

 $S(q=0) = kT\left(\frac{\partial n}{\partial \pi}\right)$

Attractive interactions \Rightarrow more compressible Repulsive interactions \Rightarrow less compressible

n; the number density of the particle (1/volume)

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

 $I(q) \sim 1/\beta_{\tau}$

S(q) Reflected in the Low-q Intensity

Intensity (arbitrary)

$$I(q) = n_p P(q) S(q)$$

Example of charged spheres: development of "interaction peak" change in low-q slope and I(0)

Must fit model to data know P(q) ?calculate S(q)?

Ornstein Zernike Equation:

 $\mathbf{h}(\mathbf{r}) = \mathbf{g}(\mathbf{r}) - \mathbf{1} = \mathbf{c}(\mathbf{r}) + \mathbf{n} \int \mathbf{c} \big(|\vec{\mathbf{r}} - \vec{\mathbf{x}}| \big) \mathbf{h}(\mathbf{x}) d\vec{\mathbf{x}}$

c(r) = direct correlation function
Integral = all indirect interactions

• A second relation is necessary to relate c(r) and g(r) <u>Percus-Yevick</u> Closure - an approximation

$$c(r) = g(r) \left[1 - e^{\beta u(r)} \right] \qquad \beta = 1/kT$$

correct closure gives correct results in general a difficult problem

$$\langle \mathbf{S}(\vec{q}) \rangle = \mathbf{S}(q) = 1 + 4\pi n_p \int_0^\infty \left[g(r) - 1 \right] \frac{\sin qr}{qr} r^2 dr$$

What Information from SANS ?

What Information from SANS ? : Non-Particulate Systems

$$\gamma(r) = \frac{\int \langle \Delta \rho(\mathbf{r'}) \Delta \rho(\mathbf{r'+r}) \rangle d\mathbf{r'}}{\int \langle \Delta \rho(\mathbf{r'}) \Delta \rho(\mathbf{r'}) \rangle d\mathbf{r'}}$$

48

- **1. Introduction**
- 2. Basic theory
- 3. Dilute systems
- 4. Concentrated/bulk systems

5. Applications

6. Summary and references

Systems that SANS Can Measure

- SANS measures the bulk nanostructures of 1nm 100's nm in solids, liquids, gel or mixtures.
- Practically, anything that has proper
 - 1) length scale, 2) neutron contrast and 3) sample volume

Neutron scattering length density

Applications of Small Angle Neutron Scattering

Sample Environments for SANS Exp.

Temperature control

Furnace (~450C)

Low Temperature (CCR) New (2003) AR5 5K CCR System

Pressure Cell (~60 kpsi)

Horizontal Field Electromagnet

(NIST Center for Neutron Research)

Couette Shear Cell

Plate/Plate Shear Cell (Polymer melts)

SANS Rheometer

52

ONSA Neutron School, Nov. 2018

Polymeric systems:

Radius of gyration: A measure of chain size

the radius of gyration

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Debye fn.: the scattering function for a Gaussian chain

the segment pair corr. fn.

$$g_{n}(\mathbf{r}) = \sum_{m=1}^{N} \left\langle \delta \left\{ \mathbf{r} - (\mathbf{R}_{m} - \mathbf{R}_{n}) \right\} \right\rangle$$
$$g(\mathbf{r}) = \frac{1}{N} \sum_{n=1}^{N} g_{n}(\mathbf{r}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \left\langle \delta \left\{ \mathbf{r} - (\mathbf{R}_{m} - \mathbf{R}_{n}) \right\} \right\}$$

the form factor

$$g(\mathbf{q}) = \int d\mathbf{r} \, e^{i\mathbf{q} \cdot \mathbf{r}} \, g(\mathbf{r}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \left\langle \exp[i\mathbf{q} \cdot (\mathbf{R}_{m} - \mathbf{R}_{n})] \right\rangle$$

$$\left\langle \exp[i\mathbf{q}\cdot(\mathbf{R}_{m}-\mathbf{R}_{n})]\right\rangle = \int d\mathbf{r} e^{i\mathbf{q}\cdot\mathbf{r}} \left(\frac{3}{2\pi|n-m|b^{2}}\right)^{3/2} \exp\left(-\frac{3\mathbf{r}^{2}}{2|n-m|b^{2}}\right)$$
$$= \left\langle \exp\left[iq_{\alpha}(\mathbf{R}_{n\alpha}-\mathbf{R}_{m\alpha})\right]\right\rangle$$
$$= \exp\left[-\frac{1}{2}q_{\alpha}^{2}(\mathbf{R}_{n\alpha}-\mathbf{R}_{m\alpha})\right] = \exp\left[-\frac{|m-n|}{6}b^{2}q^{2}\right]$$

FT of Gaussian function

the Debye fn.

 $g(\mathbf{q}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \left[1 - \left\langle i\mathbf{q} \cdot (\mathbf{R}_{m} - \mathbf{R}_{n})_{\alpha} \right\rangle - \frac{1}{2} q_{\alpha} q_{\beta} \left\langle (\mathbf{R}_{m} - \mathbf{R}_{n})_{\alpha} (\mathbf{R}_{m} - \mathbf{R}_{n})_{\beta} \right\rangle + \dots \right]$ $= \frac{1}{N} \sum_{n=1}^{N} \sum_{m=1}^{N} \left[1 - \frac{1}{6} q^{2} \left\langle (\mathbf{R}_{m} - \mathbf{R}_{n})^{2} \right\rangle + \dots \right]$ $= g(0) \left(1 - \frac{R_{g}^{2}}{3} q^{2} + \dots \right)$

$$g(\mathbf{r}) = \frac{1}{N} \sum_{n} \sum_{m} \left\langle \exp[i\mathbf{q} \cdot (\mathbf{R}_{m} - \mathbf{R}_{n})] \right\rangle = \frac{1}{N} \sum_{n} \sum_{m} \exp\left[-\frac{|m - n|}{6} b^{2} q^{2}\right]$$
$$= Ng_{b} \left(\left(qR_{g}\right)^{2} \right)$$
$$g_{b} \left(\left(qR_{g}\right)^{2} \right) = g_{b}(x) = \frac{2}{x^{2}} \left(e^{-x} - 1 + x\right)$$

$$g_{D}(x) = \frac{2N}{x^{2}} (e^{-x} - 1 + x), \quad x \equiv R_{g}^{2} q^{2}$$

$$g_{D}(q) = \begin{cases} N(1 - q^{2}R_{g}^{2}/3), & qR_{g} << 1\\ 2N/q^{2}R_{g}^{2}, & qR_{g} >> 1 \end{cases}$$

Interacting systems (polymer solutions, polymer blends)

Polymer solutions

$$\frac{(b_1 v_0 / v_1 - b_0)^2 N_A c}{I(q) m^2} = \frac{1}{zm R(q)} + \frac{N_A v_{ex}}{m^2} c$$
$$= \frac{1}{MP(q)} + 2A_2 c$$

m; the monomer molecular weight, N_A ; the Avogadro number, v_{ex} ; the excluded volume, *M*; the molecular weight the second virial coefficient

$$A_{2} = \frac{N_{A}v_{ex}}{2m^{2}} = \frac{N_{A}b^{3}}{2m^{2}}(1-2\chi)$$

the scattered intensity (Zimm equation)

$$\frac{(a_1 v_0 / v_1 - a_0)^2 N_A c}{I(q) m^2} = \frac{1}{M} \left[1 + \frac{1}{3} R_g^2 q^2 + \ldots \right] + 2A_2 c$$

the *de Gennes scattering function* for polymer blend

$$\frac{(b_1 - b_2)^2}{v_0} \cdot \frac{1}{I(q)} = \frac{1}{S(q)} = \frac{1}{\phi_1 z_1 g_0(q, z_1)} + \frac{1}{\phi_2 z_2 g_0(q, z_2)} - 2z_2$$

Fig. 8.2 Zimm plot of data in Fig. 8.1. The open circles are the result of extrapolation to zero C and zero Q (= q) (Kirste *et al.* 1975). Reprinted with permission from Wignall (1987).

Self-standing nano-emulsion

Kawada, et al., Langmuir, 2010, 26, 2430.

self-standing Nano-emulsion

About 25% oil droplet with small amount of anionic surfactant obtained by high-pressure extrusion

Transmission micrograph

Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Rheological behavior

57

2D SANS Patterns of Shake Gel

The shape of the NE and the inter-particle distance are preserved and only the long-range inhomogeneities increase by shearing.

shake gel composed of clay-PEO mixture

Takeda, et al., Macromolecules, 2010, 43, 7793.

samples

H₂O and D₂O mixtures for SANS (contrast variation SANS)

CANE

Clay Orientation in a flow field "Gedankenexperiment"

Schematic illustration showing the relationship between the anisotropy of scattering intensity and clay's orientation.

The scattering pattern changed to anisotropic at 500 s⁻¹.

To investigate $\gamma = 0, 100, 500 \text{ s}^{-1}$ more precisely, CV-SANS was applied. Lecture note; M. Shibayama, AONSA Neutron School, Nov. 2018

Scattering from three-component systems

I(*q*) measurements

Lecture note; M. Shibayama, AONSA Neutron Rartial Scatt. fun. 63

2D scattering Functions for C2P08

- **1. Introduction**
- 2. Basic theory
- 3. Dilute systems
- 4. Concentrated/bulk systems
- **5. Applications**
- 6. Summary and references

Summary: SANS

Small-angle neutron scattering is a very powerful technique to investigate nanoscale structures in a broad range of science and engineering.

References

- 1) Brückel, T. et al., Eds., Neutron Scattering, Lecture Course, Forschungszentrum, Jülich, 2005, ISBN 3-89336-395-5
- 2) Higgins, J. & Benoit, H., Polymers and Neutron Scattering, Oxford, 1994
- 3) Experimental Neutron Scattering, B.T.M. Wills, and C.J. Carlile, Oxford, 2009.
- 4) Shibayama, M., in Neutron Scattering -Applications in Biology, Chemistry, and Materials Science, Experimental Methods in the Physical Sciences, Vol. 49, Edited by Felix Fernandez-Alonso and David L. Price, Academic Press, Chap. 8, 2013.
- 5) Shibayama, M. et al., J. Chem. Phys., 2007, 127, 144507.
- 6) Kawada, H. et al., Langmuir, 2010, 26, 2430.
- 7) Takeda, M. et al., Macromolecules, 2010, 43, 7793.

NEUTRON SCATTERING – APPLICATIONS IN BIOLOGY, CHEMISTRY, AND MATERIALS SCIENCE

Edited by FELIX FERNANDEZ-ALONSO DAVID L. PRICE

VOLUME 49 EXPERIMENTAL METHODS IN THE PHYSICAL SCIENCES

Treatise Editors THOMAS LUCATORTO KENNETH BALDWIN JOHN T. YATES

