Neutron Scattering at OPAL Research Reactor

Paolo Imperia

Australian Centre for Neutron Scattering
Paolo.imperia@ansto.gov.au
10 Years of Neutron Beams

100 Operating Cycles of OPAL

1000 Scientific Research Papers
Outline

1 Introduction to ANSTO
2 OPAL Reactor & Neutron Beam Facilities
3 Australian Centre for Neutron Scattering
4 Why Neutrons?
5 User Access
6 Closing Remarks
Australian Nuclear Science & Technology Organisation

Camperdown
Cyclotron
NSW

Main site
Lucas Heights
NSW

Clayton
Australian Synchrotron
VIC
Public research organisation with a variety of roles for the nation.
ANSTO operates Australia’s research nuclear reactor - OPAL

<table>
<thead>
<tr>
<th>Formed in 1953</th>
<th>HIFAR critical 1958</th>
</tr>
</thead>
<tbody>
<tr>
<td>>$1 billion assets under management</td>
<td>Annual turnover > $350 million</td>
</tr>
<tr>
<td>Circa 1200 employees; 300 Ph.D.'s</td>
<td>OPAL Reactor Critical 2006</td>
</tr>
</tbody>
</table>
ANSTO Research Infrastructure for Users and Industry

Landmark
- OPAL Multipurpose Reactor
- Australian Centre for Neutron Scattering
- Australian Synchrotron

National
- National Deuteration Facility
- Centre for Accelerator Science
- Medical Research Cyclotron

Institutional
- Local with national impact
 - Isotope Tracing and Dating
 - Nuclear Forensics
 - Activity Standards
 - Neutron Activation and Irradiations
 - Radiotracers and Bioimaging
 - Materials Characterisation
ANSTO businesses

- ANSTO Health
- ANM: ANSTO Nuclear Medicine
- ANSTO Minerals
- ANSTO Silicon
- ANSTO Synroc
- ANSTO Radiation Services
ANSTO Lucas Heights Campus & OPAL Reactor

- 20 MW
- Open pool
- Compact core

Sydney CBD

- D$_2$O reflector
- Plate type Low Enriched Uranium fuel
- Commenced operation 2006

Melbourne AS 800 km
OPAL’s Neutron Beam Facilities

Primary Shutter TG123 In-pile & shutter components to be replaced during 2019 long shutdown
Reactor Face, Neutron Guides & Bunker

Thermal neutron guides run ~ 40m in bunker

300 x 50 mm 150 x 50 mm

TG1 TG3

Supermirror neutron guides transmit up to ~80 m from the core
Cold Neutron Source Mk2

- Licence application – CNS life 10 years (2018)
 - Conservative due to limited data on AlMg5
 - Life extension now to 15 years (2024)
- 2 x CNS currently being fabricated by HNFT
 - Increased height and volume

<table>
<thead>
<tr>
<th>Case 1 (current)</th>
<th>Case 2 (no cavity)</th>
<th>Case 3 (increased height)</th>
<th>Case 4 (no cavity and increased height)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing Gain/Loss of Cases 2, 3 & 4 normalised to Current Cold Source](image5)

![Cold Neutron Source Mk2 image](image6)
Australian Centre for Neutron Scattering

- 80 staff support 300 reactor days
 - 225 days to user service
- 14 (+1) neutron beam instruments
- 4,300 registered users
- 450 user experiments per year
- 500 individual users visit per year
 - 1,400 user visits per year
- 1061 journal publications with neutron data from users & staff (2007-2018)
 - 184 in 2017
 - 127 in 2018
Diffractometers:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECHIDNA</td>
<td>High-resolution powder diffractometer</td>
</tr>
<tr>
<td>WOMBAT</td>
<td>High-intensity diffractometer</td>
</tr>
<tr>
<td>KOALA</td>
<td>Single-crystal Laue diffractometer</td>
</tr>
<tr>
<td>KOWARI</td>
<td>Strain scanner</td>
</tr>
<tr>
<td>JOEY</td>
<td>Crystal-alignment Laue diffractometer</td>
</tr>
</tbody>
</table>

Small-angle Spectrometers:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUOKKA</td>
<td>Monochromatic SANS</td>
</tr>
<tr>
<td>BILBY</td>
<td>Time-of-flight SANS</td>
</tr>
<tr>
<td>KOOKABURRA</td>
<td>Ultra-SANS</td>
</tr>
</tbody>
</table>

Imaging & Reflectometry:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DINGO</td>
<td>Radiography/tomography/imaging station</td>
</tr>
<tr>
<td>PLATYPUS</td>
<td>Reflectometer</td>
</tr>
<tr>
<td>SPATZ</td>
<td>Reflectometer (under construction)</td>
</tr>
</tbody>
</table>

Inelastic Spectrometers:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAIPAN</td>
<td>Thermal-neutron three-axis spectrometer, with Be-filter option</td>
</tr>
<tr>
<td>SIKA</td>
<td>Cold-neutron three-axis spectrometer</td>
</tr>
<tr>
<td>PELICAN</td>
<td>Cold-neutron time-of-flight spectrometer</td>
</tr>
<tr>
<td>EMU</td>
<td>High-resolution back-scattering spectrometer</td>
</tr>
</tbody>
</table>
ACNS Operations Teams

Scientific Operations (Scott Olsen 9): Mechanical workshops, neutron delivery systems, chopper systems, vacuum systems and shielding

Sample Environment (Rachel White 8): Sample environments and laboratories support; key interface with users and support for specific experiments

Computing & Electronics (Nick Hauser 12): Software and electronic engineering, data-acquisition and data-analysis software and hardware, detectors and technical support for ACNS user portal

Electrical Engineering (Frank Darmann 8): Motion controls, encoding, safety interlocks, pneumatics, control systems, power distribution and signal earthing
SE Equipment and Instrumentation

- More than 60 individual pieces of Sample Environment equipment, including:
 - 14 cryostats or cryofurnaces + dilution insert + 3He one-shot
 - 4 magnets
 - 8 multi-sample changers
 - 3 Robots one (6 axis) dedicated to texture measurements
 - 5 furnaces
 - + pressure cells, Eulerian cradles, gas/vapour delivery, electric field, differential scanning calorimeter, rapid viscosity analyser, rheometer, solid-liquid and stopped-flow cells + more!
Lab and Main SE Work Area
ACNS Partnerships

- **Strategic Partnerships**
 - National Synchrotron Radiation Research Center (NSRRC)
 - Helmholtz-Zentrum Berlin
 - University of Tokyo
 - National Collaborative Research Infrastructure Strategy

- **Joint Research**
 - Universities & Industry
 - Students, Post-docs
 - Australian Research Council Discovery, Linkage, LIEF, Centres of Excellence, Industrial Transformation Training Centres

- **Facilities & Associations**
 - J-PARC, PSI, CIAE, BATAN, KAERI

- **Joint Appointments**
 - Adjunct Positions with Universities

- **Strategic Partnerships**
 - National Synchrotron Radiation Research Center (NSRRC)
 - Helmholtz-Zentrum Berlin
 - University of Tokyo
 - National Collaborative Research Infrastructure Strategy
Where do the users come from?

2008 – 2018

ANSTO
Users Visiting ACNS (June 2018)

4,300 registered users
Demand from 2019-1

- **Last Round 281 Proposals**
 - Australia 53%
 - Asia/Oceania 37%
 - Europe/USA 10%
Papers from ACNS Neutron Beam Instruments (July 2018)

- JIF > 6
- 3 < JIF < 6
- JIF < 3
- No JIF
Papers from ACNS NBI (October 2018)
ACNS Industrial Liaison Office

- Dedicated industry portal for access to ACNS:
 - Provide industrial access to neutron and X-ray instruments
 - Develop software and high-tech instrumentation
 - Collaborate or partner with industry in research and development projects
 - Provide specialised training for academic and industry users.
Neutrons as a Probe of Atomic and Nanoscale Structures

1. Have the right (tunable) wavelength

- Human hair: ~100,000 nm
- Red blood cells: ~7,000 nm
- Deposited nanostructures: ~500 nm
- Influenza virus: ~100 nm
- DNA: ~2 nm
- Silicon atoms: ~0.2 nm
Neutrons as a Probe of Atomic and Nanoscale Structures

2. Scatter from the nucleus
 - See light atoms next to heavy ones
 - Distinguish neighbouring atoms in periodic table
3. Scatter from the nucleus: isotopic sensitivity
 - isotopic sensitivity - contrast between H and D

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>X-ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-0.374</td>
<td>0.28</td>
</tr>
<tr>
<td>D</td>
<td>0.667</td>
<td>0.28</td>
</tr>
</tbody>
</table>
Biological and Chemical Deuteration

- ANSTO’s National Deuteration Facility
 - User Provide access to specialised laboratory space, equipment, and expertise for deuteration
 - Merit access via proposal

Chemical synthesis in D₂O

Growing bacteria in D₂O

Deuterated product

Neutrons

Infra Red (IR)

Nuclear Magnetic Resonance (NMR)

Kinetic Effect
Probe of Atomic and Nanoscale Structures

4. Energy comparable to atomic and molecular motion and dynamics
Probe of Atomic and Nanoscale Structures

5. Penetrate deeply
6. Neutrons have a magnetic moment
7. Neutrons are Fermions with spin $\frac{1}{2}$

Study of magnetism at atomic level

What is the relative size?

- Proton
- Neutron
- Electron

- 1 amu
- 1 amu
- $\sim 1/1836$ amu

- AMU = atomic mass unit = 1/12 CARBON ATOM
- (standard)

2000 electrons
1 proton
Probe of Atomic and Nanoscale Structures
3He Neutron Polarisation on 7 Instruments

- **PLATYPUS**
- **QUOKKA**
- **WOMBAT**
- **TAIPAN**
- **ECHIDNA**
- **SIKA**

Helium-3 Polarising Station
Wombat Detector
• 12 years reliable service & low maintenance cost

Quokka Detector
• High performance SANS detector
• 7k counts/second/pixel (upgradeable to 25k)
• 250m counts/second/detector
SPATZ Neutron Reflectometer

- BioRef Reflectometer transferred from HZB (BER-II reactor) to ANSTO in 2017
 - First neutrons in late 2018 & first users in early 2019
Access to ANSTO

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal & Program (3 years) proposal rounds - 15<sup>th</sup> March & 15<sup>th</sup> September.</td>
<td>Sample preparation, experiment, analysis and reporting conducted by a team of specialist scientists</td>
<td>High impact science, Measurements critical to students thesis or to complete a publication</td>
</tr>
<tr>
<td>Mail-in for Powder Diffraction measurements on ECHIDNA</td>
<td>Timely access, minimal waiting period</td>
<td>Continuously open round</td>
</tr>
<tr>
<td>No charge but expectation to publish</td>
<td>IP conditions that support commercial use</td>
<td>No charge but expectation to publish</td>
</tr>
</tbody>
</table>
Proposal Process

- Preparation
- Submission (Proposal Deadlines: 15 Sep, 15 Mar)
- Review – online through Web portal
 - Scientific – national & international experts
 - Technical & Safety Review – instrument scientists, sample environment manager, laboratory manager
 - Program Advisory Committee (PAC)
Proposal Process

- Approval
 - ACNS Director approves PAC recommendation & makes adjustments if required (may balance for institutional commitments)

- Scheduling
 - user office & instrument scientists

- Completion
 - customer feedback requested

- Reporting
 - brief scientific report
 - publications
Access Policy

- Principal Investigator agrees to principles of non-proprietary research and takes responsibility for their team
 - Non-proprietary research (no IP)
 - Publish in open literature
 - Acknowledgment of ANSTO on publication:
 - Service – standard assistance with experiment up to and including data reduction
 - Collaboration – special sample environment/experiment, assistance with data analysis, writing papers
Access Policy

- Data policy
- Each Researcher completes a Guest Researcher agreement upon arrival
 - Safety
 - Security
 - Confidentiality
 - Has Medical Insurance/Cover (international users)
Integrated User Portal & Infrastructure

Dynamic Web Pages

User Portal

Sample management

Facility Status Monitor

Publications

Instrument Schedules
Scholarships & Awards

- **AINSE Honours Scholarships**
 - Students are eligible if they are either undertaking work at ANSTO or processing prior data
 - Students receive a $5,000 stipend

- **AINSE Post Graduate Research Awards**
 - Students must have an Australian Postgraduate award or equivalent
 - Students receive:
 - $7,500 stipend per year
 - 2 return flights and up to four weeks accommodation at ANSTO

- https://grants.ainse.edu.au/
Thank you.