



# Sample Environment: What we can do for you...

R. White, G. Davidson, N. Booth, A. Manning,

D. Wakeham, T. D'Adam, S. Lee

#### What we do....





### The Labs at ACNS

- Our labs are for sample preparation not synthesis!
  - Balances, Centrifuge, ovens and furnaces available
  - Limited solvents and gases as stock
  - Please check via your Instrument Scientist/User office that we have what you need well before hand.
- Also available
  - UV/Vis, FTIR, pH meters
  - Spin coater
  - Dipping trough





# So what about Sample Environment? What is important for your sample?



**Data Acquisition Time** 

Accuracy and Precision

Results



# Be methodical / Know your sample

- Prioritise Parameters
- Temperature
  - Static (tolerance) or Range (ramp or isothermal steps)
- Pressure
  - Magnitude, pressurised with liquid or Gas
- Magnetic or Electric Field
  - Magnitude, Static ?, Direction (parallel or perpendicular)
- Light Irradiation
  - Magnitude and wavelength (or white)
- Complimentary Spectroscopy
  - Wavelength range, UV/Vis, NIR...
- THIS LIST DOES NOT INCLUDE ALL OPTIONS.



# What Range?



Temperature sensor/equipment operating ranges are finite!

Same applies to other parameters (eg. electric field)



### What Direction?

- Electric Field orientations
  - Both parallel and perpendicular available.
  - Parallel requires neutron transparent electrodes.
- Magnetic Field orientations
  - Dictated by magnet construction
    - Vertical and Electromagnet perpendicular only
    - Horizontal parallel and perpendicular (diffraction can be difficult depending on magnitude)
- Single Crystal Alignment
  - Try to do this before you arrive
  - Long thin crystal when align may touch chamber walls



### What Size?

- Discuss path lengths for SANS, USANS
- Will it fit on the sample stage? Is it cut to size ?(Strain Scanner, Radiography)
- Is it going in a cryostat? Check sample chamber dimensions.
- If its powder do you have enough ?
  - Generally neutron samples volumes are much larger than Synchrotron or normal x-ray samples.



# How many samples have you got?

- Sample changers available for SANS, USANS, Diffraction and Strain Scanner. (limited temperature ranges)
  - Soon to be available for 1T magnet

Generally cryostats one sample at a time Top loaders allow fast sample changers Bottom loaders have to be warmed to room temperature.

If you are controlling over a range that requires a changes to the SE try to minimise changes to reduce lost time.



# Planning (in a perfect world)

Prior

Preparation

Prevents

Poor

Performance

Preparation

(S.E. consultation)

- - ✓ Scientific national & international experts
    ✓ Technical & Safety Review (S.E. & Lab Manager)
  - ✓ Proposal Assessment Committee
- Scheduling
  - ✓ User Office
  - Instrument Scientists

(S.E. consultation)

- Customer feedback (smiley emoji)

(24 hrs min.)



# **Planning**

#### What REALLY HAPPENS

Preparation

WILL BRING OWN SE or None Requested (unclear proposal)

- Submission
- Review

Scientific

Technical & Safety

PAC

Proposal calls for ambient conditions

Scheduling

SE GROUP IS RELIEVED

Arrival

**Experiment parameters changed** 

SE scrambles to meet demand

- Completion
- Customer feedback

@!%!\*\*#~@#!! SE Group



# Now some cool set ups.... Big Cryo's









## **More Weird Stuff...**













# And Many more...

- High pressure on Diffraction (8GPa) and SANS (350Mpa)
- High Voltage up to 20kV
- Potentiostat control to pA
- Syringe and HPLC pumps for in situ sample delivery and mixing.
- Stopped flow cell kinetics on SANS
- Polarised neutron experiments.
- And we will help with custom designed experiments but give us plenty of time.



# What is Your Dream Experiment?

Apart from environmental controls what complimentary

measurement do you want while collecting neutron data?



# Lets talk about your SE.



