

Novel scintillation screen with significantly improved radiation hardness and very high light output

B. Walfort

Ch. Grünzweig, P. Trtik, M. Morgano, E. Lehmann, M. Strobl

WCNR11 2018, Sydney (Australia), 03. September 2018

Introduction / Overview

4th generation family hold incorporated company (founded in 1934) with long tradition in handling and application of luminous material

DIVISIONS

WATCH INDUSTRY

Phosphorescent Pigment, Paint

Varnish

RC TRITEC

Accessories, Tools

Measurement

Application

ISOTOPE TECH

Labelled Compounds

Manifold Systems

Sources

Isotope Trading

Decontamination

Neutron Scintillation Screens

SECURITY	
hosphorescent Thermoplastics	S
hosphorescent Paint	
afety Panels	
Application (Instruments etc.)	
Fluorescent Paint	

Introduction / Overview

Neutron Szintillation Screens

RC TRITEC

In 2005-2006 development of thin (50 - 100 micrometer) neutron sensitive scintillation screens on the basis of ⁶LiF/ZnS for the PSI

After success in 2006 sales of this kind of screens to the market

Since 2014 distribution of scintillation screens on the basis of Gd_2O_2S :Tb and Gd_2O_2S :Tb/⁶LiF for high resolution measurements

Since 2016/17 sales of PP/ZnS-scintillation screens for imaging with fast neutrons (see different presentations within WCNR-11 Malgorzata / Robert Zboray / ...) (Thank you James Hunter for initiation!!!)

And from now: We will see within this presentation...

General theory behind

Neutron Scintillation Screens

Typical digital camera system:

RC TRITEC

ScintillationScreen(twostepmechanism):

- Core reaction with ions of high capture cross section (^{155/157}Gd, ⁶Li or ¹⁰B) to create a secondary radiation.
- Excitation of a luminous material showing a fluorescence emission in the optimal range of the detection system.

CARTRITECGeneral theory behind

The fluorescence mechanism:

Fig. 2 Principle of scintillation in activated wide band gap materials.

- 1) Excitation creating a hole in the valence band and an excited electron in the conduction band
- 2) Relaxation of the excited electron to the ground level of the conduction band
- 3) Relaxation of the created hole to the top of the valence band
- 4) Fluorescence emission via an «impurity ion»
- 5) non emittive recombination of the electron and hole
- 6) Like 5) but via an impurity (defect center or impurity ion)

PAUL SCHERRER INSTITU

CARITECGeneral theory behind

Light yield:

$$Y_{ph} = \frac{10^6 SQ}{\beta E_g}$$
 photons/MeV

Y_{ph} = number of photons emitted by the scintillator per unit of energy absorbed

- β = constant that appears approximately 2.5
- E_g = band gap energy
- S = transfer efficiency
- Q = quantum efficiency

For the ideal situation S and Q are 100%

Red solid line represents the maximum light yield

Starting situation

Degradation of ZnS:Cu/⁶LiF scintillation screen during irradiation:

RC TRITEC

From Sept. 2015 to Sept. 2017: CTI funded development project with PSI

Reason for degradation?

- Binder?
- Converter?
- Phosphor?
- Environment?

Fitting of the curve show a two fold exponentional decay

The "Absorber"

Core reaction and secondary radiation given by the absorbing ions:

⁶Li (Capture cross section [b] = 941):

RC TRITEC

⁶Li + ¹n \rightarrow ³H + ⁴He + 4.79 MeV Inorganic material used for the scintillator: ⁶LiF

 ^{10}B (Capture cross section [b] = 3838):

 $^{10}B + ^{1}n \rightarrow ^{(07\%)}{}^{7}Li + ^{4}He + 2.78 \text{ MeV}$

¹⁰B + ¹n \rightarrow ^(93%) ⁷Li* + ⁴He + 2.30 MeV \rightarrow ⁷Li + ⁴He + γ (0.48 MeV) Inorganic material used for the scintillator: ¹⁰BN, ¹⁰B₂O₃

^{155/157}Gd (Capture cross section [b] = 60900/254000):

¹⁵⁵Gd + ¹n → ¹⁵⁶Gd + γ + conversion electrons (7.9 MeV) ¹⁵⁷Gd + ¹n → ¹⁵⁸Gd + γ + conversion electrons (8.5 MeV) Inorganic material used for the scintillator: Gd₂O₂S:Tb

The "Phosphor"

Similarity and difference of the colour centres creation under Y-quanta and hadrons

Slide presented at SCINT 2017 conference in Chamonix by Korjik

9

CHEF2017-korjik-5-10-17 •

RC TRITEC

PAUL SCHERRER INSTITUT

The "Phosphor"

Different phosphors show different radiation hardness:

Scintillator coating		Peak efficiency		(1/e) decay dose	
Material	Dopant	Ratio	Rank	Ratio	Rank
ZnS	Ag	1.00	6	1.00	5
YAG	Ce	0.31	7	8.23	1
Gd_2O_2S	Pr	4.70	3	0.80	6
	ТЬ	2.13	4	2.93	3
	Eu	6.14	2	0.65	7
Y_2O_2S	Tb	1.73	5	1.88	4
	Eu	7.15	1	3.58	2

FMAB peak efficiency and (1/e) decay dose rankings

RC TRITEC

L.R. Holland, GM. Jenkins, J.H. Fisher, W.A. Hollerman, G.A. Shelby Nuclear Instruments and Methods in Physics Research B56/57 (1991) 1239-1241

Two main effects are responsible for the degradation:

I)
High energy irradiation or ions create a high density of disorder / vacancies in the crystal
Effect by the disorder / vacancies / traps:

- a) Vacancies / disorder: increase of radiationless decay
- b) New traps: long decay
- c) Change in the surrounding of the emission center: Change in quantum efficiency

II)

RC TRITEC

High energy irradiation force a high reactivity of the surface with the environment (O_2)

- a) Change of surface chemistry destroys the luminous mechanism (radiationless decay)
- b) The presence of oxygen in the ZnS matrix increase the migration of Cu

Different secondary irradiations / protection by varnish:

RC TRITEC

#19 \rightarrow Standard mixture with ⁶LiF/ZnS

Relative I(0): 100%

 $#20 \rightarrow \text{Mixture with } {}^{10}\text{B}_2\text{O}_3$

Relative I(0): 18%

#24 \rightarrow Standard ⁶LiF/ZnS mixture with high quantity of varnish

Relative I(0): 35%

Avoid oxygen:

RC TRITEC

Degradation of ZnS-phosphor by electron beam in different gas media

Argon does not stop complete degradation but fast component (oxidation process of the surface)

S.H. Chen et al. / Journal of Luminescence 109 (2004) 93–102 N.E. Brese et al. / Solid State Ionics 123 (1999) 19–24

Sum of above and further things to do to improve:

Reduction of mechanism 1:

RC TRITEC

- Use scintillator with wider band gap (but intrinsically reduced light yield)
- Use emission center emitting in the orange / red region
- Use phosphor with lowest possible impurities and disorder (high crystallinity)
- Change from Li-6 to B-10 or Gd, due to lower energetic secondary radiations (but reduced light output)
- Doping with different cations to suppress damage (self repair mechanism)

Reduction of mechanism 2:

- Avoid oxygen and other reactive gases to supress reaction with environment

RC TRITEC 6-LiF / Zn(Cd)S-Scintillation screens

Main Reasons for higher radiation hardness:

- Red emission shows in general higher radiation hardness and
- Red emission is more efficient with standard CCD camera system
- ¹¹³Cd is generating conversion electrons, which are less destructive than triton and alpha particles from ⁶Li
- Protection against air (oxygen) by use of higher varnish quantity
- Use of less ⁶LiF in the mixture (Reduction of penetration of the phosphor by alpha particles)

6-LiF / Zn(Cd)S-Scintillation screens

Main features:

RC TRITEC

- After some time of irradiation 50% higher light output!
- Similar resolution in comparison to the ZnS:Cu/⁶LiF scintillation screen
- Better neutron statistics due to Cd-absorption. ¹¹³Cd (~13% abundancy) has neutron cross section of 20'000
- Fluorescence lifetime is strongly reduced (see next slide)

But:

- CdS is in the SVHC list (Reach, Cd causes cancer), Special precautions are required!

Special types				
Base material	Emission	Dimension	Thickness	Comment
⁶ LiF / Zn(Cd)S:Ag	605 nm (red)	up to 400 x 400 mm	50 up to 400 μm	High radiation stability and high light output

PAUL SCHERRER INSTITUT

Fluorescence Lifetime

RC TRITEC

Standard scintillation screens for neutron imaging (some technical data):				
Base material Decay				
⁶ LiF / ZnS:Cu (ratio 1 / 2)	~2 s			
⁶ LiF / ZnS:Ag (ratio 1 / 2)	~2 s			
⁶ LiF / Zn(Cd)S:Ag (ratio 1 / 3)	~50 ms			
Gd ₂ O ₂ S:Tb	~4 ms			
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce	~ 30 μs			

RC TRITE Very short fluorescence lifetime

Special types:

$Gd_{3}Al_{2}Ga_{3}O_{12}$:Ce \rightarrow Very high resolution / very short fluorescence lifetime and response!

Special types						
Base material	Emission	Dimension	Thickness	Comment		
Gd ₃ Al ₂ Ga ₃ O ₁₂ :Ce	450 nm (blue)	up to 100 x 150 mm	10 up to 100 μm	Very high resolution and very short decay (<30 μs)		

We are open to help you in your developments for new types of scintillation screen!

Thank you very much for your attention and we are looking forward to a further or new long and strong collaboration!

Fast Neutrons

For imaging with fast neutrons a polypropylen plate filled with a ZnS-phosphor is used. The scintillation is also a two step process. First neutrons interact with the hydrogen atoms of the polypropylene plate to build up recoiled protons. Those excite the ZnS to give the corresponding detectable light.

For information on light output / gamma sensitivity / resolution please have a look on the poster from Malgorzata G. Makowska or presentation by Robert Zboray or have a look into J. Imaging 2017, 3(4), 60

Standard scintillation screens for neutron imaging with fast neutrons (> 0.8 MeV):					
Base material	Emission	Dimension	Thickness	Comment	
PP / ZnS:Cu (30%)	530 nm (green)	up to 450 x 450 mm	1.5 - 3 mm	High light output and good resolution	
PP / ZnS:Ag (30%)	450 nm (blue)	up to 450 x 450 mm	1.5 - 3 mm	High light output and good resolution	

⁶LiF / ZnS-Scintillation screens

⁶LiF / ZnS-Scintillation screens (green emitting)

RC TRITEC

Thickness / Intensity / Resolution

With higher thickness we get higher light output With lower thickness we get a better resolution

At NEUTRA with different setup we have a 10 times higher light output...

Standard scintillation screens for neutron imaging with cold or thermal neutrons (0.12 – 100 meV):						
Base material	Emission	Dimension	Thickness	Comment		
⁶ LiF / ZnS:Cu (ratio 1 / 2)	530 nm (green)	up to 400 x 400 mm	50 up to 400 μm	High light output and high resolution		
⁶ LiF / ZnS:Ag (ratio 1 / 2)	450 nm (blue)	up to 400 x 400 mm	50 up to 400 μm	High light output and high resolution		

PAUL SCHERRER INSTITUT

RC TRITEC

Gd₂O₂S:Tb-Scintillation screens

Thickness / Intensity / Resolution

With higher thickness we get higher light intensity With lower thickness we get a better resolution

Saturation in light output at ~30-40 μ m. Absolute intensity ~1/10 of ZnS/LiF screen, but better resolution...

Standard scintillation screens for neutron imaging with cold or thermal neutrons (0.12 – 100 meV):						
Base material	ial Emission Dimension Thickness Comment					
Gd ₂ O ₂ S:Tb	447 / 549 nm (blue-green)	up to 100 x 150 mm	10 up to 40 μm	Very high resolution		

RC TRITEC LiF / Gd₂O₂S:Tb-Scintillation screens

Thickness / Intensity / Resolution

Addition of 6LiF give 30-50% higher brightness with same resolution!!!

Standard scintillation screens for neutron imaging with cold or thermal neutrons (0.12 – 100 meV):					
Base material Emission Dimension Thickness Comment					
Gd ₂ O ₂ S:Tb / ⁶ LiF (20%)	447 / 549 nm (blue-green)	up to 100 x 150 mm	10 up to 50 μm	Very high resolution with enhanced intensity	

PAUL SCHERRER INSTITUT