

A.P. Kaestner, J. Bilheux, C. Carminati, T. Minniti, M. Morgano, M. Schulz, M. Lerche, T. Shinohara, H. Sato, R. Woracek, T.H. Rod, M. Strobl

Analyzing imaging data an open-source collaboration

11th World Conference on Neutron Radiography, Sydney, September 1-5, 2018

What happens after an imaging experiment?

Science paradigms and neutron imaging

- Empirical "Schöni Bildli" [□]
 - Observing and describing phenomena
 - Already the old Greeks did it

2. Theoretical – analytical, many NI experiments

- Describing observations by model, abstraction/generalization
- Newton
- 3. Computational Some NI
 - Complex models, detailed problems → Simulations
- 1. Data exploration Few NI
 - Analysis by data management and statistics

Need computational methods

Data processing

Data processing can be a very labor- and computationally intense task

Basic processing

Frame N-1
Frame 0

y

time

Minutes, hours

CT reconstruction

Minutes, hours

Image processing

Hours

Visualization Analysis

Hours, days

Data analysis is time-consuming!

Months of work from experiment to publication...

... if ever!!!

Analysis workflow

Characterizing neutron imaging data

Data quality

Limited number of observations

Low SNR

Less sharp than X-rays

long experiment times

weaker sources

detection principle

Data structure

Single modality

Temporal dependency

Multi modality

Multi energy

Tensor valued

traditional transmission imaging

time series

combining images from different sources

material response, mixes

magnetism, strain, diffraction

Investigations often only involve few or even single samples \rightarrow Generalization?

Data evaluation fitness of users

Users neutron imaging have very different background and experience

Beamline scientist

Data evaluation fitness of users - Characterization

Early stage PhD student Cultural heritage users High High Advanced Advanced Advanced Technical Technical Background Non-technical Background Background Non-technical Non-technical Beginner Beginner Low Low Low

Serving people with different background and needs is a great challenge

Applications developed at PSI

MuhRec

- CT reconstruction tool
- Configurable processing chain

NIQA tool

Analysis of IAEA QA samples

KipTool

- General processing tool 3D images
- Converter tools

nGI tool

Reduction of phase stepping scans

Energy resolved imaging

New neutron sources with pulsed beam ...

... Reveal new information about the sample \rightarrow New science (Many WCNR11 Contributions)

- Bragg edge analysis
- Diffraction imaging
- Modulation techniques

Challenges on the development

- Produce large data
- Adds new dimensions to the data
- Workflow flexibility

Modern software development

- Agile development
 - Iterative development
 - Collaboration

- New issues in repository branches
- Maintain stable master through merge reviews
- Issue tracking (New features, Improvements, Fixing bugs)
- Frequent releases (2 x year)
- Automated testing and builds
- Online documentation

The PSI way

Some technical details about the development

Main coding language

In particular: C++11

- XCode (Mac)
- MSVC15 (Windows)
- g++ (Linux)

GUI Library

Version: 5.9 LTS

- Cross platform
- Qmake
- QTest

Planned binding

Python 3

- Embedded scripting
- Call libs from python
- Tutorials
- Typical work flows

Repository: GitHub

https://github.com/neutronimaging

- Development history
- Issue tracking
- Documentation (Wiki)

Build server: Jenkins

Automated builds

Planned:

- Nightly build installers
- Automatic unit testing

Why open source?

- Its free → Thus serves a wide community
- Insight in used methods → Reproducibility and traceability
- Promotes interoperability and collaboration
- A requirement from funding agencies

Collaboration Network

Do you want to contribute?

There are different ways to contribute

As developer

Contribute to existing code base in ongoing projects

Contribute with your own projects

As user

Using and promoting open source analysis tools

Give feedback (report issues, request new features)

Promote interoperability between different sites

As stakeholder

Identify use cases

Define requirements

Monitoring

Testing and verification

Wir schaffen Wissen – heute für morgen

The analysis of imaging data should be ...

... done in a reproducible way.

... open source to promote collaboration.

... developed with modern techniques.

We welcome new partners to join.

