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Summary

1. The Advanced Imaging team has been providing neutron
images of inertial confinement fusion processes
at the National Ignition Facility since 2011

2. Two additional neutron & gamma lines-of-sight plus advanced
reconstruction techniques will deliver 3D shape information

3. Building two new imaging systems drives necessity
for careful design study at LANSCE & OMEGA

4. Focus on monolithic scintillator design over a fiber array for
better resolution, light output & noise properties
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* The neutron imaging system at NIF

* Designing new systems for 3D reconstruction
 Scintillator characterization campaigns at LANSCE & Omega
« Light output, resolution, and noise results

 An ultra-fast imaging cell for a short line-of-sight
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Neutron production is a direct indicator for fusion —

making neutron imaging a powerful diagnostic
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capsules are . 6-12 MeV Neutrons
compressed and —>
heated using

laser drive > e

resulting in fusion 14.1 MeV Neutrons

inertial
gm?f'”ﬁgg”t Cold fuel (high 4.4 MoV ¢
usion density DT)

Burning fuel (DT gas)
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The current Neutron Imaging System at NIF —

NIS1 has been providing images since 2011

scintillator
aperture mirror MCP
® fiber
source rope
fiber
|enS Q taper
» Fast-gated imaging McP ccD
recording both sides of ccp camera 1
a scintillator
camera 2
« Use time-of-flight to 6-12 MeV

gate on fusion or down-
scattered neutrons

* We image a 100 micron
source from 28 m
distance!

Cold Fuel
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Planning two additional lines-of-sight:

3D neutron imaging provides hot spot and fuel density

Cold Fuel Density Distribution
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" => Transformative result for NIF!

y [mum]
~

I': 3D reconstruction algorithms in place

[1] Volegov et. al, Journal of Applied Physics, 122:17 (2017).
[2] Volegov et. al, Journal of Applied Physics, 118:20 (2015).
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The baseline design for a dual line-of-sight:

Two lens-coupled scintillators and three cameras

gammas neutrons Scintillator is key design

i i part for active system!
scintillators ‘,

high spatial resolution
- enough neutron
interactions & light

- fast decay - little

Y mirrors Robert Malone/ NSTEC afte rg low
lens

Fiber scintillator drawbacks:
* Costly, difficult to procure
* Fixed pattern noise
* Dead space (packing fraction 60-70%)
* Light loss in extramural absorber

» Co-registration issue
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LANSCE beam time allowed extensive design study

in house to test various scintillator materials

OMEGA 60 at LLE WNR/LANSCE at LANL
14 MeV fusion neutrons 800 MeV proton accelerator
High yield glass capsules tungsten spallation target

Pulse structure (1.8 micros) -> TOF

10000 Fllux at GQR

< 8000 |
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T 6000 f

O 4000
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§ 13 - 15 MeV gate

i 2000

Image: LLE 0 10 20 30 40 50
Energy [MeV]
1.5*1074 yield shot at OMEGA = ~20 min at LANSCE WNR
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Prototype tests with commercial lens

to fully characterize over 20 different scintillators

22 scintillators studied - fiber vs monolithic
(Plastic, liquid, deuterated, 0.2 to 5 cm thickness)

' . Mirror
L e

|

Rolled Edge}
‘ . 3
Step Wedge -
Neutfons Lorew VN
@

@ Tt

Lens (Canon f#1.8)
coupled with 25mm Photek
MCPII and SI800 CCD

CEA deuterated liquid

Liquid VI i ' |
qul 'maging ce glass capillary array

developed with Eljen Technolog
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A monolithic scintillator outperforms pixelated arrays

when light is collected with a lens
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Fiber array introduces fixed pattern noise and

requires a flatfield correction

6000 §ignal !-Iistogr'alm 5 cm Fiben: 5000 Signal His'tograrq 2cm Monolit'hic
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Considerations for shorter polar line-of-sight:

Liquid VIl is fast enough to move to 12 m

Magnification is similar = resolution ok

Liquid VI 30% of light output
~ half distance = 4x neutrons/ pixel -> light ok

0

10 '
+ Liquid VI (experiment)
—— Liquid VI (fit)
= BCF99-55 (fit)
£ ——EJ232 (fi) [1] Geppert-Kleinrath et. al,,
=102} RSI (2018).
a
3 Ratio of light in down-
£ scattered (6-12 Mev) vs
=R primary window (13-17 MeV)
' ; = Distance|Liq-VI EJ232 BCF99-55
0 50 100 150
Time [ns] 28 m 0.6% 2.1% 1.8%

12 m 1.8%| 2.9% 8.0%
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Summary

1. Advantages of monolithic scintillators for flash neutron imaging
- 2x light of 5 cm fiber, equal resolution, equal DQE at 2 cm thickness
- Better SNR, no co-registration issue
- cost (<1k vs 500k), simple design -> allowing multiple LOS

2. Flexible options thanks to monolithic design (Liquid VI cell)
3. Using LANSCE allowed extensive design study for novel NIS

4. Upcoming work:
- NIF prototype, lens design, gamma scintillator study
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Thank you for your attention!

neutron
Imaging

Advanced Imaging Team
P-23 Neutron Science & Technology
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The National Ignition Facility (NIF)

NIF is the largest laser source in the world (& a Star Trek movie set)

192 lasers deliver ~1.5MJ to
the x-ray producing hohlraum

~150kdJ absorbed by 1 mm
target capsule

Lawrence Livermore National Laboratory

Paramount Pictures
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Planning two additional lines-of-sight: Asymmetric

drive simulation shows benefits of 3D neutron imaging
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Fiber is less bright than originally assumed

2 cm monolithic plastic is 2 times brighter than 5 cm thick fiber
DQE is ~equal if considering packing fraction

Light per MeV deposited is 70% for fiber versus monolithic
Fraction of light collected by lens is equal

Fiber is only 65% as bright as expected

L

accept

if lens acceptance is smaller than fiber emission
angle, collection is the same (~1% for our main
testing lens) for fiber and monolithic
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Extra mural absorber dims fiber light emission

‘ mmmm) moving %°Sr source
|

PMT uncoated coated fiber single fiber experiment
R, ‘ moving radioactive source (up to
' _ 2.25 MeV beta)
: | . ! AR, shows effect of extra mural
= ]
. | " absorber
05 |- | : . .
- 30% intensity reduction
" BCF - 12 " y
- l additional surface roughness
) L G effects possible (up to 20%)
normalized signal intensity versus (men)
source position along fiber d [1] D. Albers NIM A, 371 (1996).
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Edge spread function determines spatial resolution

‘ 5 cm fiber
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Fixed pattern noise even in flatfielded power spectrum
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2D Noise Power Spectrum 2D Noise Power Spectrum
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Noise study: Power spectrum density vs thickness

2D Noise Power Spectrum
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Lens design for monolithic scintillator requires

large depth-of-field across field of view & telecentricity

\ Matlab Optometrika
for preliminary ray
tracing

NSTEC

Numerical aperture f# < 2.5
to collect > 100 photons/neutron
optical blur < 200 micron

4x

a [ o ~

Y [mm]
pholons/mmz per1in
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°
«
1imm?

- ) w

neutron
imaging




Lens design for thick scintillator: telecentric

Conventional Lens [

Telecentric Lens
Image: Edmund Optics

iRy
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— - — — g i

Telecentric lenses remedy off-axis effects
for thick scintillator

Magnification independent of object
distance
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Circle of confusion optical
blur depends on scintillator
thickness and refractive
index, and lens NA
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Optical depth of field (circle of confusion) varies with f#

Canon Lens F#1.8 Optical DOF
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Focal Distance [mm]

f#1.8 lens has
highest optical
resolution

steep DOF

NIS1 lens:

Canon Lens F#6.7 Optical DOF

S&H Lens F#1.4 Optical DOF

-10 0 10
Focal Distance [mm]

f#6.7 lens has
same highest
resolution

very wide DOF

NA 0.15 f# ~3.3

-10 0 10 20
Focal Distance [mm]

f#1.4 lens has
lower optical
resolution

ok DOF

~ 200 micron resolution at +- 100 micron DOF
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