Designing a Fast-Gated Scintillator-Based Neutron and Gamma Imaging System

Advanced Imaging Team
P-23 Neutron Science & Technology

11th World Conference on Neutron Radiography
Sydney, Australia

Verena Geppert-Kleinrath, Matthew Freeman, Frank Merrill, Petr Volegov, Carl Wilde

September 5th, 2018
Summary

1. The Advanced Imaging team has been providing neutron images of inertial confinement fusion processes at the National Ignition Facility since 2011

2. Two additional neutron & gamma lines-of-sight plus advanced reconstruction techniques will deliver 3D shape information

3. Building two new imaging systems drives necessity for careful design study at LANSCE & OMEGA

4. Focus on monolithic scintillator design over a fiber array for better resolution, light output & noise properties
• The neutron imaging system at NIF

• Designing new systems for 3D reconstruction

• Scintillator characterization campaigns at LANSCE & Omega

• Light output, resolution, and noise results

• An ultra-fast imaging cell for a short line-of-sight
Neutron production is a direct indicator for fusion – making neutron imaging a powerful diagnostic

\[^2_1 \text{D} + ^3_1 \text{T} \rightarrow ^4_2 \text{He} + ^1_0 \text{n} \]

Deuterium-tritium capsules are compressed and heated using laser drive resulting in fusion inertial confinement fusion ICF.

- 6-12 MeV Neutrons
- 14.1 MeV Neutrons
- 4.4 MeV γ
The current Neutron Imaging System at NIF – NIS1 has been providing images since 2011

- Fast-gated imaging recording both sides of a scintillator
- Use time-of-flight to gate on fusion or down-scattered neutrons
- We image a 100 micron source from 28 m distance!
Planning two additional lines-of-sight: 3D neutron imaging provides hot spot and fuel density

3D Hot Spot

Cold Fuel Density Distribution

& Down-Scattered Image

Structure of the compressed shell becoming clearer => Transformative result for NIF!

3D reconstruction algorithms in place

The baseline design for a dual line-of-sight: Two lens-coupled scintillators and three cameras

Scintillator is key design part for active system!

- high spatial resolution
- enough neutron interactions & light
- fast decay – little afterglow

Fiber scintillator drawbacks:

• Costly, difficult to procure
• Fixed pattern noise
• Dead space (packing fraction 60-70%)
• Light loss in extramural absorber
• Co-registration issue
LANSCE beam time allowed extensive design study in house to test various scintillator materials

OMEGA 60 at LLE
14 MeV fusion neutrons
High yield glass capsules

WNR/LANSCE at LANL
800 MeV proton accelerator
tungsten spallation target
Pulse structure (1.8 micros) -> TOF

1.5*10^{14} yield shot at OMEGA = ~20 min at LANSCE WNR
Prototype tests with commercial lens to fully characterize over 20 different scintillators

22 scintillators studied - fiber vs monolithic (Plastic, liquid, deuterated, 0.2 to 5 cm thickness)

Lens (Canon f#1.8) coupled with 25mm Photek MCPII and SI800 CCD

Liquid VI imaging cell developed with Eljen Technology

CEA deuterated liquid glass capillary array
A monolithic scintillator outperforms pixelated arrays when light is collected with a lens.
Fiber array introduces fixed pattern noise and requires a flatfield correction.

Fiber array needs to be flatfielded (1/yr at NIF)
Uncertainty still larger than monolithic
Considerations for shorter polar line-of-sight:
Liquid VI is fast enough to move to 12 m

Magnification is similar = resolution ok
Liquid VI 30% of light output
~ half distance = 4x neutrons/ pixel -> light ok

Ratio of light in down-scattered (6-12 Mev) vs primary window (13-17 MeV)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Liq-VI</th>
<th>EJ232</th>
<th>BCF99-55</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 m</td>
<td>0.6%</td>
<td>2.1%</td>
<td>1.8%</td>
</tr>
<tr>
<td>12 m</td>
<td>1.8%</td>
<td>2.9%</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

Summary

1. Advantages of monolithic scintillators for flash neutron imaging
 - 2x light of 5 cm fiber, equal resolution, equal DQE at 2 cm thickness
 - Better SNR, no co-registration issue
 - cost (<1k vs 500k), simple design -> allowing multiple LOS

2. Flexible options thanks to monolithic design (Liquid VI cell)

3. Using LANSCE allowed extensive design study for novel NIS

4. Upcoming work:
 - NIF prototype, lens design, gamma scintillator study
Thank you for your attention!

Advanced Imaging Team
P-23 Neutron Science & Technology
The National Ignition Facility (NIF)

NIF is the largest laser source in the world (& a Star Trek movie set)

192 lasers deliver ~1.5MJ to the x-ray producing hohlraum
~150kJ absorbed by 1 mm target capsule

Lawrence Livermore National Laboratory

Paramount Pictures
Planning two additional lines-of-sight: Asymmetric drive simulation shows benefits of 3D neutron imaging

2 additional lines-of-sight (LOS) with active scintillator detectors planned at NIF
Gamma ray imaging (GRI) will be added to new LOS
Fiber is less bright than originally assumed

2 cm monolithic plastic is 2 times brighter than 5 cm thick fiber
DQE is ~equal if considering packing fraction
Light per MeV deposited is 70% for fiber versus monolithic
Fraction of light collected by lens is equal
Fiber is only 65% as bright as expected

if lens acceptance is smaller than fiber emission angle, collection is the same (~1% for our main testing lens) for fiber and monolithic
Extra mural absorber dims fiber light emission

moving \(^{90}\)Sr source

PMT uncoated coated fiber

single fiber experiment moving radioactive source (up to 2.25 MeV beta)

shows effect of extra mural absorber

30% intensity reduction additional surface roughness effects possible (up to 20%)

Edge spread function determines spatial resolution

- 5 cm fiber
- 2 cm monolithic
- 2 cm Liquid VI

- $\sigma = 0.43 \pm 0.005$ mm
- $\sigma = 0.47 \pm 0.015$ mm
- $\sigma = 0.33 \pm 0.011$ mm
Higher absolute noise in fiber

Noise power spectrum shows artifacts related to fixed pattern noise even after flatfield correction.
Noise study: Power spectrum density vs thickness

EJ204 plastic
1, 2, 3 and 4 cm NPS evolution
Lens design for monolithic scintillator requires large depth-of-field across field of view & telecentricity.

Numerical aperture f# < 2.5 to collect > 100 photons/neutron optical blur < 200 micron.

Matlab Optometrika for preliminary ray tracing.
Lens design for thick scintillator: telecentric

Telecentric lenses remedy off-axis effects for thick scintillator

Magnification independent of object distance

Circle of confusion optical blur depends on scintillator thickness and refractive index, and lens NA

\[n_i \sin \theta_i = n_j \sin \theta_j \]

\[\theta_{accept In} = \sin^{-1} \left(\frac{NA_{lens}}{n_i} \right) \]
Optical depth of field (circle of confusion) varies with f#}

- **f#1.8 lens** has highest optical resolution, steep DOF
- **f#6.7 lens** has same highest resolution, very wide DOF
- **f#1.4 lens** has lower optical resolution, ok DOF

NIS1 lens: ~ 200 micron resolution at +- 100 micron DOF
NA 0.15 f# ~ 3.3