Designing a Fast-Gated Scintillator-Based Neutron and Gamma Imaging System

Advanced Imaging Team P-23 Neutron Science & Technology

Verena Geppert-Kleinrath, Matthew Freeman, Frank Merrill, Petr Volegov, Carl Wilde

September 5th, 2018

EST. 1943

National Nuclear Security, LLC for the U.S. Department of Energy's NNS

Summary

- The Advanced Imaging team has been providing neutron images of inertial confinement fusion processes at the National Ignition Facility since 2011
- 2. Two additional neutron & gamma lines-of-sight plus advanced reconstruction techniques will deliver 3D shape information
- 3. Building two new imaging systems drives necessity for careful design study at LANSCE & OMEGA
- 4. Focus on monolithic scintillator design over a fiber array for better resolution, light output & noise properties

- The neutron imaging system at NIF
- Designing new systems for 3D reconstruction
- Scintillator characterization campaigns at LANSCE & Omega
- Light output, resolution, and noise results
- An ultra-fast imaging cell for a short line-of-sight

Neutron production is a direct indicator for fusion – making neutron imaging a powerful diagnostic

$$^{2}D + ^{3}T \rightarrow ^{4}_{2}He + ^{1}_{0}n$$

Deuterium-tritium
capsules are
compressed and
heated using
laser drive
resulting in fusion
inertial
confinement
fusion ICF
 $^{-100 \ \mu m}$
 $^{-12 \ MeV \ Neutrons}$

density DT)

Burning fuel (DT gas)

The current Neutron Imaging System at NIF – NIS1 has been providing images since 2011

Planning two additional lines-of-sight: 3D neutron imaging provides hot spot and fuel density

Structure of the compressed shell becoming clearer => Transformative result for NIF!

3D reconstruction algorithms in place

[1] Volegov et. al, Journal of Applied Physics, 122:17 (2017).[2] Volegov et. al, Journal of Applied Physics, 118:20 (2015).

The baseline design for a dual line-of-sight: Two lens-coupled scintillators and three cameras

Scintillator is key design part for active system!

- high spatial resolution
- enough neutron interactions & light
- fast decay little afterglow

Fiber scintillator drawbacks:

- Costly, difficult to procure
- Fixed pattern noise
- Dead space (packing fraction 60-70%)
- Light loss in extramural absorber
- Co-registration issue

LANSCE beam time allowed extensive design study in house to test various scintillator materials

OMEGA 60 at LLE

14 MeV fusion neutrons High yield glass capsules

WNR/LANSCE at LANL

800 MeV proton accelerator tungsten spallation target Pulse structure (1.8 micros) -> TOF

Image: LLE

1.5*10¹⁴ yield shot at OMEGA

~20 min at LANSCE WNR

Prototype tests with commercial lens to fully characterize over 20 different scintillators

Lens (Canon f#1.8) coupled with 25mm Photek MCPII and SI800 CCD

Liquid VI imaging cell developed with *Eljen Technology*

22 scintillators studied - fiber vs monolithic (Plastic, liquid, deuterated, 0.2 to 5 cm thickness)

CEA deuterated liquid glass capillary array

A monolithic scintillator outperforms pixelated arrays when light is collected with a lens

Fiber array introduces fixed pattern noise and requires a flatfield correction

Considerations for shorter polar line-of-sight: Liquid VI is fast enough to move to 12 m

Magnification is similar = **resolution ok** Liquid VI 30% of light output

~ half distance = 4x neutrons/ pixel -> light ok

[1] Geppert-Kleinrath et. al,, RSI (2018).

Ratio of light in downscattered (6-12 Mev) vs primary window (13-17 MeV)

Distance	Liq-VI	EJ232	BCF99-55
28 m	0.6%	2.1%	1.8%
12 m	1.8%	2.9%	8.0%

1. Advantages of monolithic scintillators for flash neutron imaging

- 2x light of 5 cm fiber, equal resolution, equal DQE at 2 cm thickness
- Better SNR, no co-registration issue
- cost (<1k vs 500k), simple design -> allowing multiple LOS
- 2. Flexible options thanks to monolithic design (Liquid VI cell)
- 3. Using LANSCE allowed extensive design study for novel NIS

4. Upcoming work:

- NIF prototype, lens design, gamma scintillator study

Thank you for your attention!

Advanced Imaging Team P-23 Neutron Science & Technology

The National Ignition Facility (NIF)

NIF is the largest laser source in the world (& a Star Trek movie set)

Lawrence Livermore National Laboratory

192 lasers deliver ~1.5MJ to the x-ray producing hohlraum ~150kJ absorbed by 1 mm target capsule

Paramount Pictures

Planning two additional lines-of-sight: Asymmetric drive simulation shows benefits of 3D neutron imaging

Brian Spears/ LLNL

2 additional lines-of-sight (LOS) with active scintillator detectors planned at NIF Gamma ray imaging (GRI) will be added to new LOS 2 cm monolithic plastic is 2 times brighter than 5 cm thick fiber
DQE is ~equal if considering packing fraction
Light per MeV deposited is 70% for fiber versus monolithic
Fraction of light collected by lens is equal
Fiber is only 65% as bright as expected

Extra mural absorber dims fiber light emission

single fiber experiment moving radioactive source (up to 2.25 MeV beta) shows effect of extra mural absorber 30% intensity reduction additional surface roughness effects possible (up to 20%)

[1] D. Albers NIM A, 371 (1996).

Edge spread function determines spatial resolution

Fixed pattern noise even in flatfielded power spectrum

Higher absolute noise in fiber

Noise power spectrum shows artifacts related to fixed pattern noise even after flatfield correction

Noise study: Power spectrum density vs thickness

EJ204 plastic 1, 2, 3 and 4 cm NPS evolution

Lens design for monolithic scintillator requires large depth-of-field across field of view & telecentricity

Lens design for thick scintillator: telecentric

Telecentric lenses remedy off-axis effects for thick scintillator

Magnification independent of object distance

Circle of confusion optical blur depends on scintillator thickness and refractive index, and lens NA

Optical depth of field (circle of confusion) varies with f#

NIS1 lens: ~ 200 micron resolution at +- 100 micron DOF NA 0.15 f# ~3.3

