

# **Modern Detector Concepts for Fast-Neutron Radiography** PERTINaX – **PER**iodic Testing by Imaging with **N**eutrons in **a**ddition to **X**-rays

Florian Reisenhofer, M. Sc. Dr. Frank Charlier







### **Motivation**

- 1. Improvement of PGNAA results via fast-neutron radiography
- 2. Estimation of the influence of sample geometry on  $\gamma$  and neutron- selfshielding factors
- Structural information about samples taken by neutron radiography (and radiography with γ- or X-rays)

### **Main Goals**

2

- 1. Development of a compact fast-neutron radiography system for large volume samples (e.g. 200-l drums), combination with PGNAA
- 2. Main research: general concept and detector development



Vuclea

#### **Example – Drum measurement system at FH Aachen University**



Modern Detector Concepts for Fast-Neutron Radiography PERTINaX – Periodic Testing by Imaging with Neutrons in addition to X-rays Florian Reisenhofer, M. Sc. 11th World Conference on Neutron Radiography | Sydney | SEP 2–7, 2018





# Fast neutron radiography?

- Mobile system required
- Thick objects or thermal neutron absorbers can be radiographed
- Example: mixture of materials inside of lead shielding
- Compact neutron sources usable
- Can be combined with PGNAA systems

4

 Low cross-sections compared to slow neutrons

Previous Research:

Neutron Imaging System for Radioactive-Waste Analysis (NISRA)



Nuclear Engineering



# Previous research: aSi-Flatpanel Detector – Measurements / Results @ NISRA

## Scintillator plate EJ-260



# Scintillating fibers array



- 3 mm thick plastic scintillator plate (EJ-200/EJ-260)
- Low resolution
- Low signal
- High noise

5

- 8 mm thick bundles made out of scintillating fibers (SCSF-3HF)
- Increased resolution
- Increased signal
- High noise





#### Previous research: WSF Scintillator Module @ NISRA

Occupancy2d

8

10

12 14

Entries 265052

- Fast-Neutron scintillator EJ-410 based on ZnS(Ag) embedded in hydrogenous polymer matrix
- Threshold energy needed to cause scintillation
- Resolution of the detector system not high enough to evaluate the scintillator properly







6







### **Fast Neutron Sources**

#### **Neutron Generators**





Radioisotopes

- Discrete neutron spectra
- Negligible γ-yield
- Neutron emission only when operated
- Neutron emission up to 10<sup>10</sup> n/s
- Neutron energy 2.45 MeV (DD)

- Continuous neutron spectra
- High γ-yield
- Permanent emission of radiation
- Neutron emission up to 10<sup>7</sup> n/s
- Neutron energies up to 10 MeV





Modern Detector Concepts for Fast-Neutron Radiography PERTINaX – Periodic Testing by Imaging with Neutrons in addition to X-rays Florian Reisenhofer, M. Sc. 11th World Conference on Neutron Radiography | Sydney | SEP 2–7, 2018

### **Detectors for Readout**

| Flatpanel Detectors MA                                                  | -Photomultiplier Tubes                                                                  | Silicon Photomultipliers                                                                                  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                         | [HAM]                                                                                   | SEN                                                                                                       |
| Used in medicine / radiography<br>High spatial resolution<br>large area | <ul> <li>Used in medicine<br/>with scintillator arrays</li> <li>Large pixels</li> </ul> | <ul> <li>Used in medicine /<br/>high energy particle physics</li> <li>Pixel size comparable to</li> </ul> |
| Easy to use                                                             | <ul> <li>Fragile</li> </ul>                                                             | MA-PMTs                                                                                                   |
| Electronics on board,<br>can't be changed                               | <ul> <li>Electronics can be<br/>selected</li> </ul>                                     | <ul> <li>Electronics can be<br/>selected</li> </ul>                                                       |
| No PSD possible                                                         | Allow PSD                                                                               | <ul> <li>Allow PSD</li> </ul>                                                                             |

Engineering and Technology Transfer

UNIVE

#### Silicon Photomultipliers (SiPM)



Rq

Vbias

[FST]

Hamamatsu S-13360-1325CS Hamamatsu S-13360-1375CS





Modern Detector Concepts for Fast-Neutron Radiography
PERTINaX – Periodic Testing by Imaging with Neutrons in addition to X-rays
Florian Reisenhofer, M. Sc.
11th World Conference on Neutron Radiography | Sydney | SEP 2–7, 2018





#### **Pulse-Shape-Discrimination**



Nuclear

Transfer

Engineering and Technology

Modern Detector Concepts for Fast-Neutron Radiography PERTINaX – Periodic Testing by Imaging with Neutrons in addition to X-rays Florian Reisenhofer, M. Sc. 11th World Conference on Neutron Radiography | Sydney | SEP 2–7, 2018

### Idea for SiPM Front End Electronics, 8x8 readout



Shared V<sub>c</sub>

- Adaption for V<sub>BR</sub> via V<sub>A</sub>
   (DAC AD5382, 14bit, 32ch)
- Temperature compensation (DS18B20, one-wire)
- Threshold via DAC through fast comparator
- Two time constants (integral)
- Digitization of the integrated signal via ADC (LTC2496?)

Readout and control via Xilinx XC7575

Communication via Ethernet (W5500)





### **Scintillators suitable for PSD**

- Stilbene-(Compound)-Scintillators (PSD, high efficiency)
   → 390 nm
- Plastic Scintillators (EJ-299-33A/34, EJ-276/G)
   → 425 nm vs. 490 nm
- Liquid scintillators (PSD, light guided via matrix)
   → 425 nm for EJ-301
- Optimize thickness, mounting (better efficiency)









- Finalize schematics (front end)
- Circuit simulation, manufacturing, revisions (front end)
- Programming and testing of the FPGA
- Manufacturing of the scintillators
- Coupling SiPM/scintillator
- Evaluation





### **Picture Credits**

- [NIS] NISRA-Abschlussbericht
- [HAM] https://www.hamamatsu.com/eu/en/product/alpha/P/3002/H8711-20/index.html
- [SEN] http://sensl.com/products/sipm-arrays/
- [ELJ] http://www.eljentechnology.com/index.php/products/neutron-detectors/ej-410
- [EJP] https://eljentechnology.com/products/plastic-scintillators/ej-276
- [LLN] Lawrence Livermore National Laboratory www.llnl.gov
- [MOR] I. Mor et al. Fast-neutron imaging spectrometer based on liquid scintillator loaded capillaries
- [ORT] Ortec Modulare Pulse-Processing Electronic Catalog
- [BIR] J.B. Birks, The Theory and Practice of Scintillation Counting
- [FST] First Sensor: Introduction to Silicon Photomultipliers (2016)





15







