

Australian Government

The Centre for Accelerator Science (CAS)

David Cohen, ANSTO, Australia

Centre for Accelerator Science (CAS)

- CAS facilities
- What is a positive ion tandem accelerator?
- Ion Beam Analysis (IBA)
- Accelerator Mass Spectrometry (AMS)
- Some typical applications of ion beams

Long History at ANSTO

ANSTO has a 50 year history of accelerator use.

Seen as complementary to reactor based neutrons.

1st Microprobe done on this machine at ANSTO in 1964.

ANSTO was there when accelerator applications 'took off' in 1970's and 1980's.

VEGA Accelerator

STAR Accelerator

SIRIUS Accelerator

ANTARES Accelerator

6 MV NEC Tandem AMS and IBA 10 MV HVE Tandem AMS and IBA

VEGA Accelerator (1MV)

- IMV NEC Tandem
- 134 sample sputter ion source for heavy ions H to U, actinides.
- Single 'torturous' magnetic and electrostatic path for ions.
- Provides high precision isotope selectivity.

STAR Accelerator (2MV)

- 2MV HVE Tandem
- 2 Duoplasmatron ion sources for H, He
- 1 Sputter ion source for heavy ions C,
- 3 High energy beamlines; radiocarbon, materials characterisation, ion beam techniques.

SIRIUS Accelerator (6MV)

- ✤ 6 MV NEC Tandem.
- ✤ 3 ion sources for ions H-U.
- 4 IBA beamlines, heavy ion microprobe, heavy ion materials irradiation, surface analysis.
- 3 AMS beamlines, small sample, actinides, ¹⁰Be, ²⁶Al, ¹⁴C.

ANTARES Accelerator (10MV)

- ✤ 10 MV HVE Tandem.
- ✤ 3 ion sources for ions H-U.
- 2 IBA beamlines, heavy ion microprobe, heavy ion materials irradiation, surface analysis.
- 3 AMS beamlines, small samples, actinides, ¹⁰Be, ²⁶AI, ¹⁴C, ¹²⁹I, ³⁶CI,..

The New Libby Building – AMS Sample Preparation

The new Libby building contains the following AMS laboratories for preparation of isotopes from ⁷Be to ²⁴³Pu:-

- Actinides and lodine lab.
- Quarantine and ice lab.
- Cosmogenic lab.
- Sample etching and cleaning lab.
- Sample crushing lab.
- Quartz separation lab (atomic absorption and heavy liquid separations).
- Cathode loading lab.
- Thermal ionisation mass spectrometer (TIMS) lab.
- Inductively coupled plasma mass. spect. (ICPMS) – lase ablation lab.

Accelerators Globally

IAEA database has 197 accelerators listed 159 non-synchrotron sources

http://nucleus.iaea.org/sites/accelerators/Pages/default.aspx

The full range of accelerator facilities and capabilities at ANSTO puts us in the top five megavolt ion facilities globally.

What is a positive ion tandem accelerator?

It has three major components

High energy positive ions 100 keV to 120 MeV p, He, C, U, Pu

Accelerator tank, stripper volts +1MV to +10MV q=+1 to +12 electrons

Low energy negative ions volts -10kV to -100kV q=-1, p, He, C, U, Pu

lons 'falling' through megavolt (MV) potentials have mega-electron volt (MeV) energies.

A 1MeV proton travels at 4.6% the speed of light, i.e. 14m in a microsecond (10⁻⁶s).

A 120 MeV uranium ion travels at 3.3% the speed of light.

Positive ion currents:

 $1 \text{ pA} (10^{-12}\text{A}) = 6 \times 10^6 \text{ ions/ sec } (q=+1)$

100 μ A (10⁻⁶A) = 6x10¹⁴ ions/ sec (q=+1)

Small currents produce many ions/ sec hence ultra-sensitive probes.

Ion Sources

Solid Sample Ion Source: Cs sputter, Penning, ECR

Characteristic Parameters: output current (nA to mA), brilliance, current stability

High Energy Beamlines ANTARES Heavy Ion Microprobe

Applications: µPIXE (3 MeV H), HIXE (36 MeV C), RBS (1-3 MeV H, He), STIM (MeV He), IBIC (0.5 – 6 MeV H, He), ERDA (55 MeV I)

ANSTO Centre for Accelerator Science (CAS)

VEGA - the 1MV low energy multi-isotope accelerator

STAR - 2MV Tandetron Accelerator for IBA

SIRIUS - the 6MV medium energy tandem accelerator for IBA and AMS being tested in

ANTARES – the 10MV Tandem Accelerator

Machines available

1 MV VEGA small Tandem

¹⁴C & actinide mass spectrometry

2 MV Star Accelerator

- > Multi elemental surface analysis beamline
- High resolution depth profiling beamline
- ▶ ¹⁴C AMS beamline

6 MV SIRIUS NEC Tandem

- Confocal heavy ion microprobe beamline
- Surface engineering beamline
- Nuclear reaction analysis beamline
- Heavy ion implantation beamline
- Time of flight AMS beamline
- ▶ ¹⁰Be AMS beamline
- ³⁶ CI AMS beamline

10 MV ANTARES

- Heavy ion microprobe beamline
- Elastic recoil detection beamline
- Actinide beamline
- ¹⁴C AMS beamline
- > ¹⁰Be / ²⁶AI / ³⁶ CI AMS beamline
- Heavy ion gas filled magnet beamline

ANSTO Centre for Accelerator Science (CAS

Accelerator Capabilities at ANSTO

- High sensitivity trace element analysis
- Trace element profiling & 2D mapping with micron resolution over square millimetre areas
- Ultra high sensitivity isotope counting of ¹⁴C, ¹⁰Be, ²⁶Al, ¹²⁹I, actinides (isotopes of U and P)
- Heavy ion irradiations for materials modification
- High energy, heavy ion implantation
- Nuclear reaction analysis

Radiocarbon dating of aborigina

core sampling in Ant

ToF structural analysis of

Charged particle detector

iconductor device

Surface studies with monolayer resolution

Key Accelerator Research Themes & Applications

- > environmental monitoring, air pollution studies
- microspectroscopy, 2D elemental mapping
- microdosimetry, radiation damage studies
- thin films coatings
- ion beam modification of materials
- heavy metals in the environment
- heavy ion, surface, nuclear physics
- global climate change
- glacial geochronology
- > geomorphology
- dendrochronology (tree rings)
- > archaeology,
- atmospheric and oceanographic isotopic tracing
- nuclear safeguards

Air trapped in Antarctic Ice

Why use accelerators?

Very sensitive

Very small samples Very short processing time

1ng (10⁻⁹g)

Minutes to hours not days to weeks

Accelerator Mass Spectrometry (AMS) Isotopic Dating

Isotopic Separation on 2MV STAR

High energy analysis ^{14C} ^{14C} ^{13C} Accelerator Accelerator The remaining particles, consisting of carbon isotopes only, pass through an analysing magnet and the quantities of ¹²C, ¹³C and ¹⁴C are measured.

2 MV STAR Accelerator

AMS Isotope Measurements

Ultra-high sensitivity required where isotopic ratios are extremely small:

- eg ¹⁴C : ¹²C for radiocarbon dating
- ratios typically in range 10⁻¹² to 10⁻¹⁵

	Halflife	Isotopic ratio	Applications
¹⁴ C	5700a	¹⁴ C/ ¹² C	dating etc.
¹⁰ Be	1.51Ma	¹⁰ Be/ ⁹ Be	exposure age dating, erosion, solar variability, geomorphology
²⁶ AI	717ka	²⁶ AI/ ²⁷ AI	exposure age dating, erosion
³⁶ Cl	301ka	³⁶ CI/CI	hydrology
129	15.7Ma	129 /127	nuclear monitoring
236	23.4Ma	²³⁶ U/ ²³⁸ U	nuclear monitoring, U exploration
^{239,240} Pu	24110a, 6561a	²⁴⁰ Pu: ²³⁹ Pu / ²⁴² Pu	nuclear monitoring, sediment dating

Medical Applications – Radiocarbon

Anthropogenic Radiocarbon

- **Eye lens lipids:** certain lipids do not turn over but remain with you for life
- ANSTO in collaboration with University of Wollongong: Hughes et al. eLife 2015;4:e06003.

DOI: 10.7554/eLife.06003

Other applications include kidney stones and human organs and body parts containing carbon.

Exposure age dating

Study site: Semi-arid, monsoonal with summer tropical storms and cyclones. Sparse vegetation with minor eucalypt cover and grassland.

Cosmic ray interactions (neutrons) on N and O in the atmosphere produces ¹⁰Be and ²⁶Al

Durack River Bed

and the second s

Within paleo-river channel, abundance of disconnected stacks of metre-sized slabs dislodged from adjacent and upstream bedrock sections. Boulders excavated by hydraulic plucking of well-jointed sandstone bedrock. Flood flipped boulders: in situ cosmogenic 10 Be (T_{1/2} = 1.5Myr) evidence for extreme past flood events.

Actinides U, Pu by AMS

U and Pu isotopics and ¹²⁹I in variety of sample types Applications include:

- Nuclear safeguards and nuclear forensics, as required for law enforcement, treaty monitoring and intelligence (for example International Atomic Energy Agency inspections)
- Dating sediments using the Pu 'bomb' pulse
- Environmental studies eg U, Pu migration / uptake at waste repositories and nuclear test sites

By AMS, we can measure:

- ^{233,234,235,236,238}U isotopes down to 1ng total U
- ^{239,240,242}Pu isotopes down to 1fg
- ¹²⁹I to 1nBq in soils, etc

Swipe sampling: *D. Donohue,* Journal of Alloys and Compounds 271–273 (1998) 11–18.

- weapons grade materials: U enrichment (235/238 ratio >20%) or low ^{240/239}Pu ratio
- ²³⁶U signature of irradiation
- ¹²⁹I signature of reprocessing

Accelerator Based Ion Beam Analysis PIXE, PIGE, RBS, ERDA beamline

V STAR Accelerator

Beams of high energy ions (p, He, C....I) interact with sample surfaces. Spot sizes 1μ m to 10mm.

Interactions with $e^{-} \Rightarrow X$ -rays PIXE (AI-U)

nucleus $\Rightarrow \gamma$ -rays PIGE (Li, F, Na..)

 \Rightarrow scattered and recoiled particles RBS, ERDA (H, C, N, O,...)

IBA techniques cover Periodic Table (H to U).

Very sensitive $(\mu g/g)$ on small samples (pg).

Fast (<5mins), essentially non destructive as counting individual atoms/ photons.

Four techniques cover most of the periodic table from H to U

Mass of Particle vs Size

Particle diameter (µm)

Why Study Fine Particles?

Health implications

PM2.5 travel deep into the lungs, have direct access to the blood stream.

Absorb and scatter visible light

Fine particles are many times more efficient at scattering visible light than coarse particles. Public can see pollution!

Travel large distances

Fine particles stay in the atmosphere for days and weeks travel around the globe. Transported across countries.

Affect climate

Fine particles may have a negative climate forcing effect comparable to the positive forcing of greenhouse gases. Better understanding needed for climate modelling.

Relative Mortality Rate Ratios 6 US Cities

Australian Deserts

Deserts cover 17% of the land mass

Long Range Soil Transport

Look at extreme daily events with Soil>1.5 μ g/m³ between 2001-10

Transport of Desert Soil into Sydney Basin

Plot of 7 day back trajectories every hour with intersections for each desert region plotted for 300m and 500m starting heights for the Liverpool site.

The Riverina area (15) produced 33%-35% of extreme events! This is a significant agricultural region – not a desert!!

Dust Storms in Australia 10 Mar 09

Hay, NSW

Deniliquin, NSW

Sources of Fine Secondary Sulfate

Typical secondary sulfate sources include:-

- Motor vehicles, diesels
- Sea spray [S/Na ratios ~8%]
- Industry, metals manufacturing
- Coal fired power stations,
 - 25MT/yr of coal (>0.5%S) in NSW
 - 250kT/yr of SO₂ in NSW \rightarrow 500kT/yr of 2ndryS
 - 80MT/yr of CO_2 in NSW \rightarrow ??

Ammonium Sulfate in Sydney Basin 2001-11

Use sulfate as an indicator of coal burning and industrial activities.

Look at all extreme daily events with $SO_4 > 4\mu g/m^3$

Do Coal Fired Power Stations Impact the Sydney Basin?

Sampling site at Richmond

stations!

Study of Sensitive Volume in µ-Dosimeters

- Study charge collection variations with
 - > Location of ion strike on the device
 - > Stopping power of the ion
 - > Bias applied to micro-dosimeter
- IBIC using 3 MeV H⁺, 9 MeV He²⁺, 25 MeV C⁴⁺
- ➡ Improved dosimetry
- ⇒ Improved cancer treatment

Applications

 Cancer treatment modalities which utilise high energy loss ions for radiation therapies (proton & heavy ions)

Accelerators calibrate novel micro-dosimeters for radiation studies

- A key requirement of radiation therapy is to limit the damage to healthy cells This requires new micro-devices to plan and monitor the therapy and the radiation fields on a micron scale.
- New silicon based micro-dosimeters need to be calibrated and functionality assessed.
- This is done using ion beam induced charge (IBIC) from accelerator based ion microprobes.

IBT Accelerator Science Technology Platform

Environmental tracing, Hyper-accumulating plants systems, salinity, erosion environmental sensors

Microspectroscopy 2D, 3D mapping, characterisation, **Bio-imaging**

Fine particle air pollution

Geology **Exploration Fluid** inclusions in minerals

Radiation dosimetry Radiation damage micro-dosimetry micro-detectors **IBIC** mechanisms

Hardware & software control. High speed data acquisition, High voltage systems, Vacuum systems.

Isotopic ultra-tracing, nuclear forensics, bomb pulse, actinides, bio uptake, diet, toxicology Ion source enhancement. ECR ion source development

Earth sciences, Geomorphology, landscape change, **Climate change**

Platform

- Facilities 1-10 MeV accelerators
 - Ion sources, 20-100keV implanters,
 - Most ions in the periodic table.
- **Capabilities** Ion Beam Analysis (IBA)
 - Accelerator Mass Spectrometry (AMS)
 - Photon, particle, radiation detection
 - Ion-atom interactions with matter
 - High voltage, vacuum, electronic,

Users, universities, IAEA, collaborators, commercial, training

External revenue, grants, contracts

Materials modification. Interface engineering, Thin films coatings, **Multi-layers Fission-fusion surfaces**

> Archaeology **Archaeometry**

Fundamental physics, K,L,M, X-ray cross sections, **Coster Kronig transitions**, Subshell fluorescence yields, Heavy ion stopping **Nuclear reactions**

Nuclear security and defence, safeguards

Thank you

Questions?