

Beam Loss Technology

Eduardo Nebot del Busto

(1) CERN, Geneva, Switzerland

(2) The University of Liverpool, Department of physics, Liverpool, U. K

(3) The Cockcroft Institute, Warrington, U.K

ACAS School for Accelerator Physics

Outlook

- Introduction
- Detector technologies
- Detector location
- Machine protection implementation
- State of the art
- Challenging environments

A graphical introduction

Introduction

Detector technologies

Sources of BLM signal

Ionization

- Energy loss described by Bethe-Bloch
- Concept of MIP

 $dE/dx_{MIP} = (1-5) MeV cm^2 g^{-1}$

Scintillation

 Ionizing radiation detectors located around an accelerator

 $\mathbf{Y} = \mathbf{d}\mathbf{L}/\mathbf{d}\mathbf{x} = \mathbf{R} \ \mathbf{d}\mathbf{E}/\mathbf{d}\mathbf{x}$

Secondary Emission

Y_{MIP} = (0.01-0.05) e/primary

Cherenkov Effect

photon yield:
$$\frac{dN}{dx} = 2 \cdot \pi \cdot \alpha \cdot \sin^2 \Theta \cdot \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$

 $\cos \Theta = \frac{1}{2}$ with $\beta > 1/n$; $\alpha = 1/137.036$ and $\lambda_{1,2}$ = wavelength interval

E. Nebot del Busto

Ionization - Gas detectors

Incident particle produces e-/ion:

- Fast electrons and slow ions collected via Bias voltage to produce a measurable current
- Typical ionization potentials (25-100) eV/pair

E. Nebot del Busto

Ionization - Gas detectors

Ionization Chambers

E. Nebot del Busto

Ionization - Gas detectors

Saturation effects:

- Large number of e/ion pairs generated
- Field generated by ions shields bias field
- Charge recombination

Ionization Chambers: PROs/CONs

- Very robust, radiation hard, require low mantainance
- No dependence on Bias Voltage
- Large Dynamic range
- Slow time response (~0.1 1 ms)

Ionization - Solid state detectors

Semiconductor based detectors (Si, Diamond, ...)

- Incident particles produce electron/ holes as charge carriers (3-10eV/pair)
- $t_{hole} \gtrsim t_{electron} \sim 1-10 \text{ ns}$
- smaller size

Solid state Ionization Chambers: PROs/CONs

- No dependence on Bias Voltage
- Fast response (1-10 ns)
- Radiation hardness (1 MGy)

Scintillators

- Light produced by de-excitation of atomic/molecular levels
- Multiple types
 - Inorganic crystals: Nal, Csl ...
 - Organic (plastic): NE103, Antracene
 - Liquid

- Photo Multiplier Tube: active photon sensor
 - Light from scintillator to PMT via waveguides

E. Nebot del Busto

Scintillators

Considerations

- Photon Yield
- Collection efficiency
- Photocathode quantum efficiency
- PMT gain $G_{PMT} = \delta^n = (10^{+5} 10^{+8})$
 - $\delta = (2-10)$ number of secondary electrons
 - n = (8-15) number of dynodes

Scintillators: PROs/CONs

- High sensitivity
- Fast response: ~ (1-10) ns for plastic/liquid
- Slow response: ~ $(0.1 1)\mu$ s for inorganic
- Limited radiation hardness (1-10 MGy)
- PMT gain control

Material	Rs (7/MeV)	ρ (g/cm³)
Nal	8 10+4	3.7
PbWO ₄	2 10+2	8.3
NE102	2.5 10+4	1.03
Antracene	4 10+4	1.025

E. Nebot del Busto

Secondary Emission Monitors

Sensitivity defined by SEM Yield

- 0.01- 0.05 e⁻/primary

Two possible uses

- No amplification (needs current integration)
- Amplification
 - broadband current amplifiers
 - PMT

SEM: PROs/CONs

- Fast (< 10 ns) e transit
- Very linear
- Very radiation hard (no PMT)
- Low sensitivity

Cherenkov detectors

Considerations (similar to scintillators)

- Photon Yield (continuous)
- Collection efficiency (directionality)
- Photocathode quantum efficiency (match cherenkov spectrum)
- PMT gain $G_{PMT} = \delta^n = (10^{+5} 10^{+8})$
 - $\delta = (2-10)$ number of secondary electrons
 - n = (8-15) number of dynodes

Cherenkov: PROs/CONs

- Fast (only limited by PMT response)
- Insensitive to neutral radiation
- Low sensitivity
- Limited radiation hardness (10 100 MGy)

BLMs across different machines

E. Nebot del Busto

Technology choice

No universal rule

- detector choice depends on main properties of the machine
- Intensity, energy, particle type, timing, length ...

Main considerations

- Sensitivity/Dynamic Range
- Time response
- Expected type of radiation
- Shield-ability (from unwanted radiation)
- Physical size
- Test ability
- Calibration techniques
- Cost

Particle tracking codes (SixTrack, MadX, ...):

- implementation of accelerator optics
- Mapping of the aperture limits along the machine

Monte Carlo simulation codes: (SixTrack, MadX, ...):

- Geometry of accelerator components
- Mapping of the aperture limits along the machine

Particle Shower in the Cryostat

Good probability that losses are seen by two BLM detectors

23.01.2006

Chamonix 2006, B.Dehning

8

E. Nebot del Busto

Machine Protection

Depends on the technology of your magnets, cavities, ...

- Normal conducting. Damage of components
- Superconducting. Quench protection ($T < T_C$)

Linear accelerators (Linac) vs storage ring

 Storage rings require protection for single turn/multi turn losses with different threshold level

How we protect

- Safe beam extraction (storage rings)
- Subsequent injection inhibit (linac)

Abort thresholds calculations

Geant 4 simulation of horizontal losses in bending magnet

Read out and processing electronics

Complicated readout with multiple inputs and connected to interlock

Abort thresholds optimiztion

Data driven approach for threshold tuning

E. Nebot del Busto

Threshold handling

Complicated applications for handling and monitoring of signals and thresholds

E. Nebot del Busto

State of the art: examples

Diamond detectors at the LHC

Diamond detectors at the LHC

E. Nebot del Busto

Optical fibres

Light (scintillation or Cherenkov) generated in fiber core

- Full coverage of beam lines
- Potential position reconstruction via photon Time of Flight

E. Nebot del Busto

Optical fibre: Position reconstruction

ASAP 2016 - BLM Technology

E. Nebot del Busto

Optical fibre: Dosimetry

Beam Loss Monitors in high background environments

RF structure related background

Particles accelerated by surfing the wave

Wave Propagation

(a) The BLM (red fibre) above the CLIC structure (in the middle)

- Electrons released from inner surface of cavities
 Full coverage of beam lines
- Xrays generated in the cavity may limit the BLM sensitivity

E. Nebot del Busto

Synchrotron radiation

Location vi Optical Time Domain Reflectometry

Total dose via Radiation Induced Attenuation

ESRF: Quartz rods as Cherenkov radiators

Fermi@Elettra Quartz core optical fibers

E. Nebot del Busto

Electromagnetic noise

High EM noise

- Ground Loop
- Bad shielding

E. Nebot del Busto

 Ripple (power supplies, magnets...)

Electromagnetic noise

High EM noise

- Ground Loop
- Bad shielding
- Ripple (power supplies, magnets...)

E. Nebot del Busto

Electromagnetic noise

High EM noise

- Ground Loop
- Bad shielding
- Ripple (power supplies, magnets...)

MAGIC! GHOSTS!! SABOTAGE!!!

Keep scratching your head for days/months and finally BLAME OTHERS!!!

References

- (1) K. Wittenburg. "Beam Loss Monitors" CAS2008.
- (2) A. Zukov. "Beam Loss Monitors: Physics, Simulations and Applications in accelerators". BIW2010.
- (3) E. B. Holzer. "Beam Loss Monitoring for demanding environments". IBIC2015
- (4) E. Nebot. "An overview on Beam Loss Monitoring". Advanced oPAC school on Acceleration optimization 2014.
- (5) T. Obina. "Optical fiber based loss monitors for electron storage rings". IBIC2013.
- (6) Particle data group:
 - "Review of particle physcis". Phys Rev. D 86. 010001 (2012) 30.
 Passage of Particles though matter
 - "Particle Physics Booklet". <u>http://pdg.lbl.gov/</u>