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INTRODUCTION

Particles in a storage ring are oscillating in the longitudinal and transverse
dimensions, and therefore, the frequency domain is natural for analyzing many
beam generated signals. Information ranging from oscillation frequencies to
beam phase space distributions can be extracted from the spectral content of these
signals.

It is often necessary to switch between time and frequency domains using
Fourier transforms. If f(t) is a function of time, F(co) given by

(1)

is its Fourier transform. In this equation j = w and m is the angular frequency
which is the appropriate mathematical variable rather than the frequency
v = co/27c that is measured by spectrum analyzers. The meaning of the word
“frequency” depends on context, but the notation v for frequency and co for
angular frequency will be rigorous. The inverse transform is

(2)

These notes are restricted to relativistic beams, and for these beams the
image current flowing in the walls of an accelerator vacuum chamber, iw, has a
line density equal to the line density of the beam current, ib ,

(3)

with an overall minus sign since it is an image current. The image current is an
ideal current source; nothing placed in the vacuum chamber wall can affect it
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because the beam would have to be decelerated for that to happen. The image
current flowing through a beam detector produces a voltage VoUt given by

(4)

where S is the detector longitudinal sensitivity. The sensitivity depends on the
detector, on whether it is a cavity, strip line, capacitive pickup, etc., and S(m) can
vary rapidly or slowly with frequency. I am assuming the variation is slow, and
that the spectrum of the output voltage is the same as that of the wall and beam
currents. Many measurements can be made in a narrow frequency band where the
sensitivity can be treated as a constant, so this is a good approximation. If it isn’t,
corrections must be made to account for frequency dependence of the sensitivity.

If the beam is offset from the vacuum chamber center, the image current is
not uniform; instead, it varies around the beam pipe due to the displacement of the
beam. A transverse beam detector responds to the dipole moment

(5)

where rl (t) is the displacement from the center. The output voltage of a
transverse detector is

(6)

where SA and D are the transverse sensitivity and the Fourier transform of the
dipole moment, respectively. As with the longitudinal, SA is assumed to vary
slowly with frequency, and corrections must be made if that isn’t a good
approximation.

A SINGLE PARTICLE

The spectrum of a single particle is like a Green’s function, and it is the
key to understanding the spectrum produced by a beam. Three separate cases are
consider in an order of increasing complexity: 1) constant revolution frequency,
2) Frequency Modulation introduced by synchrotron oscillations, and 3)
Amplitude Modulation introduced by betatron oscillations.

Longitudinal Motion & Constant Revolution Frequency

The current of a single, unit-charge particle with a constant revolution
frequency co,, Figure 1, is a periodic set of impulses spaced a time T = 27c/q.
apart

(7)



Figure 1. A particle with a constant revolution frequency passing a beam detector
located at one point in the ring and the spectrum it produces.

Fourier transforming this gives

(8)

The last sum is an infinite sum of unit magnitude phasors. If these phasors are at
different angles they will add up to zero because there is an infinite number of
them, but if they are all at the same angle the sum will be infinite. The latter
happens when oYQ equals an integer; every angle is an integer multiple of 2rc in
that case. This is written formally as

The spectrum is a comb of equal amplitude lines spaced at w extending from 6.)=
-~tool=m. It is shown in Figure 1. The spectrum has two properties - the
frequencies that are given by the argument of the &function  and the envelope that
is given by the factor in front. The frequencies are harmonics of COr, and the
envelope equals q. independent of frequency.

There are both positive and negative frequencies in eq. 9, but spectrum
analyzers measure only positive frequencies. How should the negative
frequencies be interpreted? Fourier transforming to the time domain

(lo)

Each term in the sum is unit magnitude phasor. The angles of the positive
frequency phasors increase with time while those of the negative phasors decrease
with time. The phasors for the same Inl are shown in Figure 2. The real parts are
in phase, and the imaginary parts are 1800 out of phase. The physically
meaningful quantity is the real part that is given by



Figure 2. Positive and negative frequency phasors for the same Inl and the
mathematical and measured, physical spectra. The line at n = 0 is one-half that for n #

0 because there is no corresponding negative frequency line .

(11)

The positive and negative frequency phasors appear in phase and at the same at
the same frequency on the spectrum analyzer. The resulting spectrum is shown in
Figure 2.

Frequency Modulation Introduced By Synchrotron Oscillations

Synchrotron motion modulates the arrival time by

where Za is the synchrotron oscillation amplitude, o ~
frequency and (p is the phase.* Instead of being a series
exactly T apart, the current is

is
of

(12)

the synchrotron
impulses spaced

(13)

where Za is the synchrotron oscillation amplitude, o ~ is the synchrotron
frequency and (p is the phase at n = 0. The synchrotron frequency and
synchrotron tune Q~ are related by co~ = Q~o.)r. The Fourier transform is

* The synchrotron frequency and synchrotron tune Qs are related by cos = QSCDr.



In the limit of small amplitude or low frequency, ma cc 1, the second
term in the exponent can be approximated with a Taylor expansion

The first of the three sums is the same as for a constant revolution frequency.
Take a look at the second one;

The last step follows from the same logic used for a constant revolution frequency
- the sum equals zero unless (co - W)/cor is an integer. The frequencies differ from
the rotation harmonics by + ~. The third term in eq. 15 leads to frequencies that
differ from the rotation harmonics by -~. Synchrotron motion has lead to two
new frequency combs displaced from the rotation harmonics. Both of these
combs have envelopes that depend linearly on frequency.

The approximation in eq. 15 is valid for small amplitudes and/or low
frequencies. The Taylor series expansion could be continued. The next term
would affect the envelope of the rotation harmonics and introduce frequency
combs displaced from the rotation harmonics by *2 w. However, rather than
doing this it is better to perform a Bessel function expansion 1

where Jk is an ordinary Bessel function of order k. This same expansion leads to
Bessel functions in every analysis of Frequency Modulation. Using this in eq. 14
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Figure 3. The envelopes for different synchrotron sidebands and qI = 7c/2,

As before the summation over n restricts the possible frequencies. In this case it
requires that (m - k @)/wr equals an integer. Performing the sum

Equation 19 gives the general expression for the spectrum of a particle
undergoing synchrotron motion. It is an important result that deserves substantial
discussion.
1 .

2 .

3 .

The approximate treatment based on a Taylor expansion corresponds to three
of the terms, k = -1, 0, 1, when the lowest order Taylor expansions for the
Bessel functions are used.
For each rotation harmonic there is an infinite number of sidebands. They are
displaced from the rotation harmonic by kco~, k = - m,...,~  and have different
envelopes. The envelopes illustrated in Figure 3 have the usual properties of
ordinary Bessel functions: i) they are even (odd) functions of ma if k is even
(odd) and ii) the first maximum of Jk is at OMa = k. When Iwl << l/~a only
the rotation harmonics, k=0, are present, and as the frequency increases more
sidebands appear. This is illustrated in Figure 4.
The synchrotron sideband number, k, appears in two different places: i) the
frequency shift from the rotation harmonic is k%, and ii) the envelope is
Jk(co’ca).  The best frequency region to observe the kti  sideband is at m - ld~a
This connection between frequency shift and frequency region for observation
will become important when the phase space structure of a beam is
considered.



Figure 4. The spectra for different (or’ca for a synchrotron tune Q5 = 0.01 and q = 7c/2.
The heavy dashed line is k = 0 in each case

4.

5.

to

The phase (p is the phase of the synchrotron oscillation when n = 0. Since the
sum is infinite, n = 0 is arbitrary, and, therefore, (p is arbitrary. This situation
changes when multiple particles are considered, and the phases of the particles
relative to each other has significance.
The observed spectrum is obtained by combining the positive and negative
frequency components. The signals at al = ~& = nor + km and w = - ~~k
have the same physical frequency, and as the next line shows, they add
coherently in the physical spectrum. Fourier transforming back to the time
domain and taking the real part gives

Amplitude Modulation Introduced By Betatron Oscillations

Constant Revolution Frequency

A particle can be offset from the center of a transverse beam detector due
closed orbit errors, synchrotron oscillations combined with dispersion, or

betatron oscillations. A closed orbit offset produces a spectrum identical to that



of longitudinal motion alone. Synchrotron oscillations combined with dispersion
do not introduce new frequencies although they do affect the envelopes.z
Betatron motion produces Amplitude Modulation that leads to new frequencies
and new phenomena in the spectrum. The next two sections concentrate on
betatron motion.

Begin with a constant revolution frequency. The displacement is given by

(21)

where A ~ is the betatron amplitude, and Op is the betatron frequency that is
related to the betatron tune, Q Do, by Q PO = O@@r. The dipole moment and its
Fourier transform are

(22)

There are two frequency combs. One is displaced from the rotation
harmonics by +m~ and the other by -m~. Each has a constant envelope. This is
illustrated in Figure 5. The betatron tune is almost always greater than one, and,
as consequence of measuring the dipole moment at only one point on the orbit, the
integer part of the tune cannot be measured from the spectrum.

There is also an ambiguity in measuring the fractional part of the tune.
The spectrum when the fractional part of the tune equals q ~ is the same as when
the fractional part equals 1- q~. Figures 5b and 5d illustrate this. The ambiguity
arises because AM produces sidebands above and below the rotation harmonics.
One way to resolve it is to increase the tune by strengthening a focusing
quadruple and observing whether the spectral line moves to lower or higher
frequency. The frequency of a line in the region ncor < @ < (n + 1/2)0,  will
increase if q ~ < 0.5, and it will decrease if q~ > 0.5.

The physical spectra in Figures 5b, 5d could have been derived in a
different way. Rather than using eq. 21 for the transverse displacement, r~ could
have been written

(24)

This would have resulted in a mathematical spectrum with only upper sidebands
of amplitude A ~. However, when the real part of the resulting expression was



Figure 5. The mathematical (a, c) and physical (b, d) spectra given by eq. 23 when
= 2.33 (a, b) and Q PO = 1.66 (c, d). For purposes of illustration the lines from one comb

are solid and the lines from the other comb are dashed.

taken, the physical spectra would be the same as in Figures 5b and 5d. A
generalization of
displacement when

eq. 24 is the more convenient form for the transverse
the effects of synchrotron oscillations are included.

Betatron and Synchrotron Motion

The focusing strength of a quadruple depends on energy, and energy is
modulated by synchrotron motion. As a result, the betatron phase does not
advance smoothly. The generalization of eq. 24 in terms of the betatron phase iy~
i s

The time rate of change of ~~ is

(25)

(26)

where 8 is the fractional deviation from the central energy and cob = Q ~oq is the
betatron frequency when 6 = 0. The chromaticity, ~, measures the variation of
betatron tune with energy. It is defined as



(27)

The energy deviation is 900 out of phase with the time deviation, ~

(28)

where cx is the momentum compaction. Substituting this into eq. 26 and
integrating gives

The chromatic frequency is and ~ is a constant of integration
related to the betatron phase at

The dipole moment is

Following the procedure developed above,
frequencies gives

and identifying the important

This result gives the general expression for the transverse spectrum of a
particle undergoing betatron and synchrotron oscillations and is comparable in
importance to eq. 19.

1 .

2 .

3 .

4 .

There are an infinite number of synchrotron sidebands centered about the
betatron frequencies. These sidebands are displaced from the betatron lines by
k%,  k = -co,..., co.
The envelopes are ordinary Bessel functions with argument (co – cop – ~~)~a.
In contrast to the longitudinal, these envelopes are offset from m = 0 by cop –
~ = ol~ since typically cop <<0<, A positive chromaticity shifts the
envelopes to positive frequencies, etc. This is illustrated in Figure 6.
The envelope of sideband k is Jk(( ~~~)~a).  The best frequency region to
observe the kti  sideband is at 0- cog + k/~&.  Depending on the chromatic
frequency, high order sidebands can be seen at low frequencies.
The phase of the betatron oscillation when n = 0 only has meaning for
multiple particles.
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Figure 6. Envelopes for the betatron line (k = 0) for three different values of chromatic
frequency.

5. The observed spectrum is obtained by combining the positive and negative
frequencies as has been done above. The mathematical spectrum based on eq.
25 has only upper sidebands, but the physical spectrum has both upper and
lower sidebands. The lower sidebands come from negative frequencies in this
mathematics.

MULTIPLE PARTICLES

The expressions in eqs. 19 and 32 are the basis for understanding beam
generated signals. For example, the longitudinal spectrum of a beam can be
derived by convoluting eq. 19 with the longitudinal phase space density of the
beam, p(za, q), where p~adzadq  is the charge in phase space area ~ad~adq;

The envelope has changed, but the frequencies haven’t.
The examples below will show how information about the beam can be

extracted from spectra. These examples are intended to illustrate methods that
can be applied to many problems.

11



Longitudinal Phase Space Structure

When beam intensity is low, particle motion is determined by magnet and
RF cavity fields. Beam generated fields can be neglected, and particles move
independently of each other. The longitudinal phase space density can depend on
~a, but it can’t depend on (p. If it did, particles would not be independent.* The
phase space density is p(~a, q) = p. (~a )/27c, and the beam generated signal is

Only the k = 0 term is not equal to zero once the (p integral is performed. There
are rotation harmonics but no synchrotron sidebands.

If the beam has charge Q and is Gaussian in ~ with rms bunch length 07,

(35)

and3

The spectrum is a comb of rotation harmonics with a Gaussian envelope with rms
width of I/oz. A detector with a flat sensitivity up to m - lIoT can be used to
measure the bunch length. Alternatively, an amplitude measurement at a fixed
frequency of co - I/oz could be used to monitor changes in bunch length.

The appearance of synchrotron sidebands and azimuthal structure in
longitudinal phase space are directly related. Observation of synchrotron
sidebands implies azimuthal phase space structure, and azimuthal phase space
structure leads to synchrotron sidebands. Phase space structure arises from
interaction of the beam with its own fields. Since these fields depend on the
bunch distribution, that distribution is the solution of a self consistency problem
formulated using the Vlasov Equation.4

The phase space density can be written as a Fourier expansion

Substituting into eq. 33

(37)

*
This holds down to the Schottky noise level of the beam.
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Figure 7. Phase space for the quadruple perturbation given by eq. 39.

There is a direct relation between each sideband and a specific harmonic of the
phase space structure; the mth harmonic of the phase space structure produces a
~ignal  a~ the -k th sideband.

As a specific example, suppose that the beam
perturbation illustrated in Figure 7

has a quadruple

(39)

is given by eq. 35. The Za dependence of the perturbation was chosen
for the purpose of this example. Substituting eq. 39 into 38 and performing the
integrals 3

There are rotation harmonics and sidebands at *2 ~. The envelopes are shown in
Figure 8. The sideband signal is a maximum at 0- 1.51CT7 and is about a factor of
100 less than the rotation harmonics in this frequency range for A’ = 0.01.
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Figure 8. The envelopes for the rotation harmonics and second synchrotron sidebands
for the example in eq. 39.

Longitudinal Schottky Noise

Particles move independently of each other when beam generated fields
are negligible, and it was argued in the previous section that a consequence is that
the longitudinal phase space density, p (~a, q), cannot depend on q. However,
there is a limit to this because a beam consists of individual particles not a smooth
distribution. The particles cannot arrange themselves to remove all q dependence.
They wouldn’t be independent if they could. There is some residual q dependence
and some signal, called Schottky noise, from it.

Taking account of individual particles, the phase space density is

where q is the particle charge, ~aP and 9P are the amplitude and phase of the p th
particle, and there are P particles in the beam. Using this distribution, eq. 33
becomes

(42)
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The current depends on the phase space coordinates of P particles, and it is
different for every ensemble of particles.

This is just like a random walk problem. The result of a random walk is
unknowable, but statistical quantities based on an ensemble of random walks have
meaning. The relationship between the phase space coordinates of different
particles changes with time due to non-linearities and random processes such as
emission of synchrotron radiation photons. Therefore, while the current at a
particular time is unknowable, the mean and rms currents are meaningful
statistical quantities. They can be determined by averaging over all possible
samples of P particles. This averaging is denoted by angular brackets, < >’s.

Each of the terms in the expression for Ink (eq. 42) is a phasor with
magnitude given by the Bessel function and direction given by the argument of
the exponential. When k # 0, the phasors point in all directions, and when
averaged over all possible samples < Ink > = 0. The phase which had no meaning
for a single particle is critically important for a beam. When k = 0 all the phasors
point in the same direction, and the sum does not vanish. The discrete particle
nature of the beam is critical for evaluating the phasor sum, but once that is done
the sum over particles can be evaluated with an integral using the phase space
density po(~a). The mean current, < Ino >, is given eq. 34.

The square of the rms current is given by

The terms in the double sum are phasors. In general they point in arbitrary
directions making the sum equal to zero when the average is taken. However, for
any sample of P particles the phasors line up and add coherently when 9P = q%;
i.e. when particle p is the same as particles. This removes one of the sums, and

(44)

The sum over particles has been replaced by an integral over ~a in the last step.
When the beam is Gaussian and po is given by eq. 35s
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Figure 9. Envelopes for the rotation harmonics, a coherent structure with A2 = 104 (eq.
40), and the k = 2 rms Schottky current for1011 particles and Vr =50 kHz.

(45)

Equations 44 and 45 have several interesting features. First, since Q = qP,
the rms current is proportional to ~P as expected from shot noise. In contrast to
eq. 38 that depends on unknown constants (e.g. AZ in eq. 39), the noise
calculation is absolute. Equation 44 gives the noise current, and currents above
this value are due to phase space structure. This is illustrated in Figure 9 where
the current from a quadruple structure with Az = 10-4 is larger than Schottky
noise for Wz < 3.5. If AZ = 10-5 the cross over point would move to COOT  -2.0.

Transverse Phase Space Structure

Analyses of Schottky noise and signals associated with phase space
structure can be performed for transverse motion also. The Schottky analysis is
an extension of the previous section and is not repeated here. It can be found in
Ref. 2. The signals from transverse phase space structure introduce new ideas and
are treated in this section.

In general, a 4-dimensional phase space density, K, must be used to
calculate the transverse signal because eq. 32 depends on the betatron amplitude
and phase and the synchrotron amplitude and phase
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The phase space density can be expanded in a Fourier series in v and (p. The only
component of the ~ expansion with a non-zero dipole moment is the one with
symmetry exp(-j~).  All of the others equal zero when the yJ integral in eq. 46 is
performed. Each of the components of the (p expansion can produce a signal, and,
as in eq. 38, there is a relation between phase space structure and sidebands.

The new aspect is that the betatron amplitude can depend on the
synchrotron amplitude, A~ = A ~(~a). In general, coherent transverse modes have
such dependencies. 4 As a specific example consider all of the particles oscillating
with the same amplitude, AO, and a Gaussian distribution in ~a (eq. 35) with no q
dependence. The phase space density is

(47)

and

The envelope is a Gaussian centered at o = cop + m~ = co ~ and shifts as the
chromaticity changes.

The transverse displacement at t = 0 is (eqs. 25 and 30)

The connection between the transverse displacement and the shift of envelope
with chromaticity can be understood by plotting the dipole moment, p or~, for
different chromaticities and at different times. This is done in Figure 10. When ~
= 0, the transverse motions of all the particles are in phase. The signal has an
average value, i.e. a component at w = 0; the time scale of the dipole moment is
the bunch length, 07, and the characteristic frequency is o - llcr~. As the
chromaticity increases a head-to-tail phase shift is introduced, and the head and
tail are out of phase. The average value of the signal decreases thereby decreasing
the signal at co = 0. In addition, the dipole moment varies more rapidly along the
bunch. This shortens the time scale and increases the characteristic frequency; the
envelope has shifted to higher frequency as given by eq. 48.
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Figure 10. The dipole moment at different times for different values of chromaticity.

Coupled Bunch Signals

The examples above have all involved convolution of single particle
signals with the beam phase space density. The final one goes back to the
derivation leading to eq. 19. Assume that the beam has 2 equally spaced bunches
each of which can be treated as a macroparticle and that these bunches are
coupled together by a long range wakefield. The phase shift between bunches,
A(p, can have only discrete values from the following argument. If the phase of
the first bunch is (p, the phase of the second bunch is q) + A(p, and the phase of the
third bunch is (p + 2A(p. The third bunch is the same as the first bunch, so the
possible values for Aq are Aq = 0, n. The first bunch current is given by eq. 19.
Assuming the second bunch has the same amplitude, its current is given by eq. 18
with a phase factor expti(kA(p  +j ncoT/2)] multiplying it. The first term is the
bunch-to-bunch phase shift, and the second is due to the arrival time delay of the
second bunch. Adding these two currents together gives
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Figure 11. The two bunch spectra for coupled bunch modes with 0 and n phase shift
between bunches.

For rotation harmonics the phase difference between bunches doesn’t
matter, the current equals zero when n is odd, and it is double the single bunch
current when n is even. The latter two follow from n@rT/2  = nn. When k = *1,
the sidebands of the odd rotation harmonics are present if A(p = n and are missing
(neglecting a factor O(co~T/2)) if Aq = 0. The sidebands of the even rotation
harmonics are missing if A(p = n and present if A(p = 0. This is illustrated in
Figure 11. The presence or absence of particular sidebands tells the relative
motion of the bunches.

This analysis can be generalized to many bunches. For B bunches the
possible values for the phase shift between bunches are AT= 2nm/B where m =

B - 1 is called the coupled bunch mode number. Only every Bth rotation
harmonic appears, and if one sees synchrotron sidebands of the nth rotation
harmonic it is from a coupled bunch mode with mode number n = mod(n, B).
This follows because the phasors representing the current of the individual
bunches have the same phase and add up coherently only when

(51)

If bunches are unequally spaced or have different charges or amplitudes,
these simple results may not hold, but the same phasor addition can be used to
identify dominant lines for different couple bunch modes.

CONCLUDING REMARK

There is a wealth of information in the beam spectrum. The techniques
used in the examples above can be applied and/or extended to chromaticity
measurements, coherent frequency shifts, etc. In addition, there is a close
relationship between beam generated signals and beam stability because it is the
current and dipole moment that drive accelerator impedances and produce forces
that act on the beam.
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These paper was intended to introduce ideas and methods for
understanding beam spectra. I hope it serves that purpose.
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