
Voltage Divider

Consider the voltage divider above, and its Thevenin equivalenyt circuit: `

- a. Predict the Thevenin equivalents V_{th} and R_{th} , and the short-circuit current, for $V_{in} = 15V$
- b. Construct this voltage divider, with $R_1=R_2=10k$: Apply $V_{in}=15V$. Measure V_{out} . Compare with Prelab prediction.
- c. Attach a 10k load across V_{out} . Measure this new V_{out} . Explain (quantitatively, show calculation) why V_{out} drops when the load is attached.
- d. Remove the 10k load. Insert an ammeter in series with V_{out} and measure this short-circuit current. Find $R_{th} = V_{th} / I_{sc}$ and compare with Prelab prediction.
- e. From your measurements, calculate the Thevenin equivalent parameters: V_{th} and R_{th} and sketch the Thevenin equivalent circuit.
- f. Build the Thevenin equivalent circuit, and repeat parts a c. You should get the same results.
- g. Change the resistors to 10M (megohm) and repeat your measurements. Figure out why they're different.