Lecture note for ASLS accelerator School

SR monitor lecture 1, 2 and 3

By Prof. Dr.Toshiyuki MITSUHASHI KEK, Graduated school for advanced study

Lecture 1Introduction for the beaminstrumentation based onSynchrotron Radiation

Lecture 2 Geometrical optics of focusing system

Lecture 3 Wave optics of focusing system

Lecture 4 Coherence theory of light

Lecture 5 Theory of synchrotron radiation

Lecture 6 Interferometry

Lecture 1

Introduction for the Beam instrumentation based on Synchrotron Radiation **Classical Optics is disappearing from curriculum of Universities now!**

Some geometrical optics can find in high school physics.....

You can buy or find not kind textbooks.

I try to introduce classical optics useful for beam instrumentation based on Synchrotron radiation .

1. Introduction

2. Beam instrumentation based on visible SR

3. Popular equipments

1. Introduction

What is the beam instrumentation based on SR ?

What is the beam instrumentation based on SR ?

Measure the fundamental parameters of Accelerator through the transverse and longitudinal profile, size, etc. statistically, or dynamically using *Optical technique* with the synchrotron radiation. Light source is normally SR emitted from the bending magnet of accelerator.

Sometimes have dedicated magnet for light source.

 Visible SR
 400nm-800nm.

 X-ray SR
 0.05-0.3nm.

VUV region is not used because of difficulty in actual handling.

Based on Visible Synchrotron radiation

Transverse beam profile or size diagnostics

geometrical optics Wave optics 1st and 2ed order spatial coherence

Imaging

Interferometry

Lecture on tomorrow

Imaging is simply watch the beam in inside of accelerator with a telescope

The coherence theory of light is given in Lecture 4

Lecture 6

Longitudinal

Longitudinal beam profile or size diagnostics

imaging temporal into spatial 2ed order temporal coherence (1st order coherence)

Streak camera

Intensity interferometry Auto correlation Cross correlation

Based on X-ray synchrotron radiation for submicron beam size measurement

Transverse beam profile or size diagnostics

Transverse beam profile or size diagnostics

Geometrical optics

Imaging Pinhole camera Fresnel zone plate K-B mirror Few μm 1st and 2ed order spatial coherence

Interferometry

X-ray interferomter

Sub µm

Key point is wavefront error <</p>

Transverse beam profile or size diagnostics

Geometrical optics

1st and 2ed order spatial coherence

Imaging

Interferometry

Fresnel zone plateX-ray interferomterK-B mirror (Kirkpatrick-Batz mirror)Few μmSub μm

2. SR monitor based on visible SR

Set up of SR monitor

Synchrotron radiation Optical path to dark room Key components and it's design

Synchrotron radiation from Bending Magnet

bending magnet - a "sweeping searchlight"ρfrom ensemble ofρindependent electrons

$$L \approx \frac{\rho}{\gamma^3}$$
 range of μm

$$\tau \approx \frac{\rho}{c\gamma^3}$$
 range of fs
 $\omega_c \approx \frac{c}{L} \approx \left(\frac{c}{L}\right) \cdot \gamma^3 > 10^{12} Hz$

wide range in spectrum

Narrow opening angle

θ

Detail of the synchrotron radiation is in Lecture 5

Components in optical beamline

Set up of SR monitor

1. Extraction mirror

Beryllium extraction mirror

Photon Factory E=2.5GeV, $\rho=8.66$ m

Beryllium extraction mirror for the B-factory E=3.5GeV, $\rho=65$ m

Photon energy (keV)

Deformation of extraction mirror in the case of X-rays in center

Blue-Green500nm

X-Ray0.1nm

Beryllium extraction mirror for the B-factory E=3.5GeV, $\rho=65$ m

Photon energy (keV)

Surface deformation for Be mirror of type used at KEKB 200W (ten times intense) beam will come in Supper KEKB.

Example of mirror surface deformation by X-ray irradiation

p-v : 0.911 rms. : 0.211

Distortion of the beam image due to deformation of the extraction mirror

Wavefront error due to deformation of the extraction mirror is key point in the SR monitor!!

How to identify wavefront error Due to deformation of extraction mirror

1. Fieau interferometer

2. Schack-Hartmann method

3. Ray tracing using Hartmann mask

1. Fieau interferometer 1st order coherence

2. Schack-Hartmann method Geometrical optics

3. Ray tracing using Hartmann mask Geometrical optics

Surface of Be mirror without beam

hit ENTER to continue

Surface of Be mirror

50mA

Geometrical ray tracing Spot diagram

Surface of Be mirror

Surface of Be mirror

2. Schack-Hartmann method

Practical set up of Schack-Hartmann method

Local gradients on mirror are magnified by angular magnification of relay system

(10 x 10)

Ray tracing by Hartmann mask

Projection of rays

Observation plane

Characterization of mirror deformation due to SR irradiation by the use of Hartmann screen

Hartmann square screen Diameter of hole 1mm 10x10, 5mm spacing

Spots pattern on observation plane by square hole array

Wavefront error due to thermal deformation of extraction mirror From 300mA to 450mA at the Photon Factory, KEK

Let's put wavefront at 300mA into null, and observe wavefront distortion

Comparison of these methods to identify the wavefront distortion

1. Fizeau interferometer	
Coherent method:	very week for floor vibrations
Sensitivity:	$\lambda/5-\lambda/10$ (depend on reference plate)
Device location:	In front of mirror
Optical path:	Not included
Other:	Non destructive, Expensive
2.Shack-Hartmann	
Incoherent method:	strong for floor vibrations
Sensitivity:	$\lambda/5$ - $\lambda/10$ (depends on angular magnification)
Device location:	In front of mirror
Optical path:	Not included
Other:	Non destructive, Expensive
3.Hartmann screen	
Incoherent method: strong for floor vibrations	
Sensitivity:	$\lambda/5$ - $\lambda/10$ (depends on optical lever length)
Device location:	Mask locates in front of mirror
Optical path:	Included
Other:	Destructive, Cheep

Idea for extraction mirror with X-ray absorber

Extraction mirror with X-ray absorber

2. Glass window for the extraction of visible SR

General design of the glass window. In this figure, (a): metal O-ring, (b): vacuum-side conflat flange, (c): optical glass flat, (d): air-side flange.

Transmitted wavefront measured with interferometer wavefront error is less than $\lambda/20$

Important points

Air tight structures surrounding of optical line are very important to escape from air turbulence.

Both end of optical line must be closed by glass window to making it air tight.

Mirror with its holder used for the optical path

Surface quality: $\lambda/10$

Installation of optical path ducts and boxes at the KEK B-factory

Relay lens installed in the optical path duct

3. Popular equipments in down stream of optical path

Most fundamental equipment ; focusing system to observe the beam image

Typical image of the beam

Dynamical observation of beam profile with high-speed gated camera

Function of high-speed gated camera

Turn by turn image of injected beam into storage ring

Optimization of injection

Optimization for Kicker bump

Beam profile without kicker magnet

Beam profile with kicker magnet

Streak camera to measure longitudinal profile

Result of bunch length at rage between 0.2mA to 70mA

Error in bunch length measurement due to chromatic aberration

Result of bunch length measurement at the Photon Factory by white ray (non-monochromatic)

Dynamical observation for beam instability using the streak camera

Turn by turn **Vertical beam** profile

Observation of transverse quadruple motion in the vertical beam profile

Head-tail oscillation

Longitudinal profile oscillation

Focusing components are used everywhere in the SR monitor!

Optics to understand focusing system is most important issue in the SR monitor

Lecture 2

Geometrical optics of focusing system

Geometrical optics of focusing system

Thin lens approximation

Newton's equation for thick lens

Longitudinal magnification

$$\frac{\Delta \mathbf{x}_1}{\Delta \mathbf{x}_2} = \frac{d\mathbf{x}_1}{d\mathbf{x}_2} = \frac{d}{d\mathbf{x}_2} \left(-\frac{\mathbf{f}^2}{\mathbf{x}_2}\right) = \frac{\mathbf{f}^2}{\mathbf{x}_2^2} = \beta^2$$

Longitudinal magnification is given by square of transverse magnification

How about this combination?
Where is back principal point?

Where is back principal point?

Telephoto lens

Where is front principal point?

Telephoto lens

Where is front principal point?

Telephoto lens

How about this combination?

How about this combination?

Letro focus lens

How about this combination?

Letro focus lens

Aberration in Seidel's region

- 1. Piston
- 2. Tilt
- **3.** Spherical (appear in on axis)
- 4. Comma (appear in off axis)
- 5. Astigmatism (appear in on axis)
- 6. Distortion (uneven wavefront error)

In the focusing system which used in SR monitor, image will appear in narrow field around optical axis.

In this case, most important aberration is on-axis spherical aberration.

For understanding the spherical aberration, let us start with focusing mirror system by ellipsoidal surface.

Spherical aberration

What is definition of focal length??

What is definition of focal length??

Only discuss with paraxial rays, We can define focal length of the lens! paraxial focal length = focal length

At average focus point, spherical aberration Looks;

How to correct spherical aberration?

Off course, we shall use non-spherical surface for reflective system, but How we can do in the refractive (lens) system?

Front focus

$$f = \frac{f_1 \cdot f_2}{f_1' + f_2 - d}$$

d≠0 *f, f*'≠∞

Back focus

 $f' = \frac{f'_1 \cdot f'_2}{f'_1 + f'_2 - d}$

Over correction

Under correction

Full correction

Over correction

Chromatic aberration

Concept of achromatic lens

Chromatic aberration plot

Astigmatism due to troidal focusing power

Comma due to tilted incidence

Alignment error (tilt) of lens also produce comma

Alignment error (tilt) of lens also produce comma

Lens has often has a wedge component!

More general theory for aberrations

Zernike's circule polynomial and aberration coefficients.

Zernike's circule polynomial for expansion of wavefront sag.

$$W(x,y) = W(\rho \sin \theta, \rho \cos \theta) = W(\rho, \theta)$$
$$= \sum_{n=0}^{k} \sum_{m=0}^{n} A_{nm} \cdot R_{n}^{n-2m}(\rho) \cdot \begin{cases} \cos |n-2m| \theta |: n-2m \ge 0\\ \sin |n-2m| \theta |: n-2m < 0 \end{cases}$$

$$R_n^{n-2m}(\rho) = \sum_{s=0}^m (-1)^s \frac{(n-s)! \rho^{n-2s}}{s!(m-s)!(n-m-s)!}$$

Aberration coefficients

- A_0^0 : Piston A_4^0 : spherical
- \mathbf{B}_1^1 : Tilt in y
- \mathbf{A}_1^1 : Tilt in x
- **A**⁰₂: Focus shift
- \mathbf{B}_2^2 : Astigmatism in diagonal
- A_2^2 : Astigmatism

Graphical drawing of Zernick's aberration function

Conclusions from Geometrical Optics

Focusing system has many aberrations, even on optical axis!

This error is very often not smaller than diffraction width!

Careful analysis of aberrations is important!

Lecture 3

Wave optics of focusing system

Wave optics for focusing system

Diffraction

Paraxial approximation

$$\mathbf{U}(\mathbf{p}_0) = \iint_{\Sigma} \mathbf{h}(\mathbf{P}_0, \mathbf{P}_1) \mathbf{U}(\mathbf{P}_1) d\mathbf{x}_1 d\mathbf{y}_1$$
$$\mathbf{h}(\mathbf{P}_0, \mathbf{P}_1) = \frac{1}{\mathbf{i} \cdot \lambda} \frac{\exp(\mathbf{i} \cdot \mathbf{k} \cdot \mathbf{r}_{01})}{\mathbf{r}_{01}} \frac{\cos(\mathbf{n}, \mathbf{r}_{01})}{\mathbf{a} \mathbf{a} \mathbf{1}}$$
$$\mathbf{h}(\mathbf{P}_0, \mathbf{P}_1) = \frac{1}{\mathbf{i} \cdot \lambda} \frac{\exp(\mathbf{i} \cdot \mathbf{k} \cdot \mathbf{r}_{01})}{\mathbf{r}_{01}}$$

The Fresnel approximation for r_{01} in phase factor

$$r_{01} = \sqrt{z^{2} + (x_{0} - x_{1})^{2} + (y_{0} - y_{1})^{2}}$$
$$= z\sqrt{1 + \left(\frac{x_{0} - x_{1}}{z}\right)^{2} + \left(\frac{y_{0} - y_{1}}{z}\right)^{2}}$$
$$\cong z\left[1 + \frac{1}{2}\left(\frac{x_{0} - x_{1}}{z}\right)^{2} + \frac{1}{2}\left(\frac{y_{0} - y_{1}}{z}\right)^{2}\right]$$

Spherical \Longrightarrow **Quadratic** phase factor

$$\mathbf{h}(\mathbf{x}_{0}, \mathbf{y}_{0}: \mathbf{x}_{1}, \mathbf{y}_{1}) = \frac{\exp(i\mathbf{k}z)}{i\lambda z} \exp\left[\frac{i\mathbf{k}}{2z}\left[(\mathbf{x}_{0} - \mathbf{x}_{1})^{2} + (\mathbf{y}_{0} - \mathbf{y}_{1})^{2}\right]\right]$$

Quadratic wave

$$= \frac{\exp(ikz)}{i\lambda z} \exp\left[\frac{ik}{2z} \left[x_0^2 + y_0^2\right]\right] \exp\left[\frac{ik}{2z} \left[x_1^2 + y_1^2\right]\right]$$
$$\times \exp\left[\frac{ik}{2z} \left[x_0 x_1 + y_0 y_1\right]\right]$$

Fresnel diffraction

The Fraunhofer approximation Very long z

Fraunhofer diffraction

Propagation of light in free space by few 10m

Fresnel diffraction!

Fraunhofer diffraction: few km

Pupil with Lens

Pupil with Lens

Paraxial Lens transfer function t_l

Physical meaning of paraxial lens transfer function

$$\mathbf{U}_{1}'(\mathbf{x},\mathbf{y}) = \mathbf{P}(\mathbf{x},\mathbf{y})\mathbf{t}_{1}(\mathbf{x},\mathbf{y})\mathbf{U}_{1}(\mathbf{x},\mathbf{y})$$
$$= \mathbf{P}(\mathbf{x},\mathbf{y})\mathbf{U}_{1}(\mathbf{x},\mathbf{y})\exp\left[-i\frac{\mathbf{k}}{2f}\left(\mathbf{x}^{2}+\mathbf{y}^{2}\right)\right]$$

$$U_{f}(x_{f}, y_{f}) = \frac{\exp\left[i\frac{k}{2f}\left(x^{2}_{f} + y^{2}_{f}\right)\right]}{i\lambda f}$$

$$\times \iint_{\Sigma} U_{1}(x, y) \exp\left(-i\frac{k}{2f}\left(x^{2} + y^{2}\right)\right) \exp\left(i\frac{k}{2f}\left(x^{2} + y^{2}\right)\right) \exp\left[\frac{ik}{2f}\left[xx_{f} + yy_{f}\right]\right] dxdy$$
Lens transfer

function

Quadratic wave

As the result; $U_{f}(x_{f}, y_{f}) = \frac{\exp\left[i\frac{k}{2f}(x^{2}_{f} + y^{2}_{f})\right]}{i\lambda f}$ Plane wave $\times \iint U_{1}(x, y)P(x, y) \exp\left[\frac{ik}{2f}[xx_{f} + yy_{f}]\right] dxdy$

$$U_{f}(x_{f}, y_{f}) = \frac{\exp\left[i\frac{k}{2f}\left(x^{2}_{f} + y^{2}_{f}\right)\right]}{i\lambda f}$$

$$\times \iint_{\Sigma} U_{1}(x, y) \exp\left(-i\frac{k}{2f}\left(x^{2} + y^{2}\right)\right) \exp\left(i\frac{k}{2f}\left(x^{2} + y^{2}\right)\right) \exp\left[\frac{ik}{2f}\left[xx_{f} + yy_{f}\right]\right] dxdy$$

$$Loss transfor$$

Lens transfer function

Quadratic wave

Diffraction on image plane

1.
$$\mathbf{U}_0(\mathbf{x}_0, \mathbf{y}_0) \longrightarrow \mathbf{U}_1(\mathbf{x}, \mathbf{y})$$

 $\mathbf{U}_1(\mathbf{x}, \mathbf{y}) = \iint \mathbf{U}_0(\mathbf{x}_0, \mathbf{y}_0) \exp\left(i\frac{k}{2d_0}(\mathbf{x}^2 + \mathbf{y}^2)\right) \exp\left[\frac{ik}{2d_0}[\mathbf{x}_0\mathbf{x} + \mathbf{y}_0\mathbf{y}]\right] d\mathbf{x}_0 d\mathbf{y}_0$

2.
$$\mathbf{U}_{1}(\mathbf{x}, \mathbf{y}) \longrightarrow \mathbf{U}_{1}(\mathbf{x}, \mathbf{y})$$

Lens transform
 $\mathbf{U}_{1}(\mathbf{x}, \mathbf{y}) = \mathbf{t}(\mathbf{x}, \mathbf{y})\mathbf{U}_{1}(\mathbf{x}, \mathbf{y})$
 $= \iint \mathbf{U}_{1}(\mathbf{x}, \mathbf{y}) \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp\left(-i\frac{\mathbf{k}}{2\mathbf{f}}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \exp\left(i\frac{\mathbf{k}}{2\mathbf{d}_{0}}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right)$
 $\times \exp\left[\frac{i\mathbf{k}}{2\mathbf{d}_{0}}\left[\mathbf{x}_{0}\mathbf{x} + \mathbf{y}_{0}\mathbf{y}\right]\right] d\mathbf{x}_{0} d\mathbf{y}_{0}$

3. U'₁(x,y)
$$\longrightarrow$$
 U_i(x_i,y_i) Fresnel transform

$$U_{i}(x_{i}, y_{i}) = \iint U'_{1}(x, y) \exp\left(i\frac{k}{2di}(x^{2} + y^{2})\right)$$

$$\times \exp\left[\frac{ik}{2di}[xx_{i} + yy_{i}]\right] dxdy$$

Then, h is given by;

$$\mathbf{h}(\mathbf{x}_{0}, \mathbf{y}_{0}: \mathbf{x}_{i}, \mathbf{y}_{i}) = \iint \mathbf{U}'_{1}(\mathbf{x}, \mathbf{y}) \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp\left(i\frac{k}{2di}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \exp\left(i\frac{k}{2d_{0}}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \\ \times \exp\left(-i\frac{k}{2f}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \exp\left[\frac{ik}{2d_{0}}\left[\mathbf{x}_{0}\mathbf{x} + \mathbf{y}_{0}\mathbf{y}\right]\right] \exp\left[\frac{ik}{2di}\left[\mathbf{x}\mathbf{x}_{i} + \mathbf{y}\mathbf{y}_{i}\right]\right] d\mathbf{x}d\mathbf{y}$$

Tidy up the equation;

= (Quadratic phase factor) ×
$$\iint \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp \left[i\frac{k}{2}\left(\frac{1}{d_0} + \frac{1}{d_i} - \frac{1}{f}\right)\left(\mathbf{x}^2 + \mathbf{y}^2\right)\right]$$

$$\times \exp\left[-ik\left(\left(\frac{x_{0}}{d_{0}}+\frac{x_{i}}{d_{i}}\right)x+\left(\frac{y_{0}}{d_{0}}+\frac{y_{i}}{d_{i}}\right)y\right)\right]dxdy \frac{\text{physical meaning}}{\text{is not clear!}}$$

Then, h is given by;

$$\mathbf{h}(\mathbf{x}_{0}, \mathbf{y}_{0}: \mathbf{x}_{i}, \mathbf{y}_{i}) = \iint \mathbf{U}_{1}(\mathbf{x}, \mathbf{y}) \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp\left(i\frac{k}{2di}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \exp\left(i\frac{k}{2d_{0}}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right)$$
$$\times \exp\left(-i\frac{k}{2f}\left(\mathbf{x}^{2} + \mathbf{y}^{2}\right)\right) \exp\left[\frac{ik}{2d_{0}}\left[\mathbf{x}_{0}\mathbf{x} + \mathbf{y}_{0}\mathbf{y}\right]\right] \exp\left[\frac{ik}{2di}\left[\mathbf{x}\mathbf{x}_{i} + \mathbf{y}\mathbf{y}_{i}\right]\right] d\mathbf{x}d\mathbf{y}$$

$$= \left(\text{Quadratic phase factor} \right) \times \iint \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp \left[i \frac{k}{2} \left(\frac{1}{d_0} + \frac{1}{d_i} - \frac{1}{f} \right) \left(\mathbf{x}^2 + \mathbf{y}^2 \right) \right]$$
$$\times \exp \left[-ik \left(\left(\frac{\mathbf{x}_0}{d_0} + \frac{\mathbf{x}_i}{d_i} \right) \mathbf{x} + \left(\frac{\mathbf{y}_0}{d_0} + \frac{\mathbf{y}_i}{d_i} \right) \mathbf{y} \right) \right] d\mathbf{x} d\mathbf{y} \left[\begin{array}{c} \mathbf{Excise} \\ \mathbf{What is physical} \\ \mathbf{meaning of this term?} \end{array} \right]$$

Answer ; Return to geometrical optics;

Then phase factor
$$\exp\left[i\frac{k}{2}\left(\frac{1}{d_0}+\frac{1}{d_i}-\frac{1}{f}\right)(x^2+y^2)\right]$$
 be 1

Then, h becomes

$$\mathbf{h}(\mathbf{x}_0, \mathbf{y}_0: \mathbf{x}_i, \mathbf{y}_i) = \iint \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp \left[-ik \left(\left(\frac{\mathbf{x}_0}{\mathbf{d}_0} + \frac{\mathbf{x}_i}{\mathbf{d}_i}\right)\mathbf{x} + \left(\frac{\mathbf{y}_0}{\mathbf{d}_0} + \frac{\mathbf{y}_i}{\mathbf{d}_i}\right)\mathbf{y}\right)\right] d\mathbf{x} d\mathbf{y}$$

Introducing magnification M;

$$M \equiv \frac{d_i}{d_0}$$

$$\mathbf{h}(\mathbf{x}_0, \mathbf{y}_0: \mathbf{x}_i, \mathbf{y}_i) \cong \iint \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp\left[-\frac{\mathbf{i}\mathbf{k}}{\mathbf{d}_i} \left((\mathbf{x}_i + \mathbf{M}\mathbf{x}_0)\mathbf{x} + (\mathbf{y}_i + \mathbf{M}\mathbf{y}_0)\mathbf{y} \right) \right] d\mathbf{x} d\mathbf{y}$$
The Fraunhofer differentian will be appear on image

The Fraunhofer diffraction will be appear on image plane with magnification in geometrical optics!

Diffraction patterns for several apertures

2-D cross section of 3-D diffraction pattern

Intensity of longitudinal on axis

$$N = \frac{a^2}{\lambda \cdot f}, \qquad U(z) = \frac{2\pi}{\lambda} \left(\frac{a}{f}\right)^2 z$$
$$V(z) = \frac{U(z)}{1 + \frac{U(z)}{2\pi N}}$$
$$I(z) = \left(1 - \frac{V(z)}{2\pi N}\right) \left(\frac{\sin\left(\frac{V(z)}{4}\right)}{\frac{V(z)}{4}}\right)^2$$

Longitudinal diffraction pattern for lens f=1000mm, a=80, 40, 20mm

Cross section of longitudinal diffraction pattern

Focal shift dependence to change of aperture diameter due to longitudinal diffraction

Inside and outside beam images around focus point

The diffraction PSF is smeared with aberrations, but we still can feel discontinuity of longitudinal diffraction pattern from this observations.

Definition of field depth=Full Width at 8th **Maximum**

Filed depth ≠ coherent length of light (length of wave pocket)

Ensemble of incoherent lights come from source point makes Field depth.

In generally, from this view point Field depth should say as Incoherent field depth

Coherent field depth = length of wave pocket

Impulsive response function in inverse space and CTF, OTF, MTF

Let's go to the inverse space!

Let us introduce very important parameter, Spatial frequency f_x,f_y by

$$f_{x} = \frac{2\pi x}{\lambda d_{i}}$$
$$f_{y} = \frac{2\pi y}{\lambda d_{i}}$$

$$\mathbf{h}(\mathbf{x}_0, \mathbf{y}_0: \mathbf{x}_i, \mathbf{y}_i) = \iint \mathbf{P}(\mathbf{x}, \mathbf{y}) \exp \left[-\frac{\mathbf{i}\mathbf{k}}{\mathbf{d}_i} \left(\left(\mathbf{x}_i + \mathbf{M}\mathbf{x}_0\right)\mathbf{x} + \left(\mathbf{y}_i + \mathbf{M}\mathbf{y}_0\right)\mathbf{y} \right) \right] d\mathbf{x} d\mathbf{y}$$

$$= \mathbf{M} \iint \mathbf{P}(\mathbf{f}_{x}, \mathbf{f}_{y}) \exp\left[-i\left(\left(\mathbf{x}_{i} + \mathbf{M}\mathbf{x}_{0}\right)\mathbf{f}_{x} + \left(\mathbf{y}_{i} + \mathbf{M}\mathbf{y}_{0}\right)\mathbf{f}_{y}\right)\right] d\mathbf{f}_{x} d\mathbf{f}_{y}$$

Then, we introduce the spatial invariant response function by;

$$\widetilde{\mathbf{h}} = \frac{1}{M} \mathbf{h}$$

$$\widetilde{\mathbf{h}}(\mathbf{x}_0, \mathbf{y}_0 : \mathbf{x}_i, \mathbf{y}_i) = \iint \mathbf{P}(\mathbf{f}_x, \mathbf{f}_y) \exp\left[-i\left((\mathbf{x}_i + \mathbf{M}\mathbf{x}_0)\mathbf{f}_x + (\mathbf{y}_i + \mathbf{M}\mathbf{y}_0)\mathbf{f}_y\right)\right] d\mathbf{f}_x d\mathbf{f}_y$$

Now we stand in front of entrance for
the inverse space!

Consider propagation of Field of light

What is coherent illumination?

Disturbance of illumination Uc is represented by:

$$\mathbf{U}_{c} = \frac{A \exp(ikz)}{i\lambda z} \exp\left[i\frac{k}{2z}\left(x^{2} + y^{2}\right)\right]$$

if z becomes very large, Uc becomes plane wave.

Example: CW Laser such as He-Ne Laser

$G_0 = \mathscr{F}(U_0)$ $\mathscr{F}($): Fourier transform

$H=\mathscr{F}(\widetilde{h})$

 $G_i = \mathscr{F}(U_i)$

Then

$\tilde{h} = \mathscr{F}(\mathbf{P}(\mathbf{f}_{x},\mathbf{f}_{y}))$

Then,

$\mathbf{H}=\mathscr{F}(\mathscr{F}(\mathbf{P}(\mathbf{f}_{x},\mathbf{f}_{y})))=\mathbf{P}(\mathbf{f}_{x},\mathbf{f}_{y})$

Coherent transfer function (CTF) is pupil function it self !

Consider propagation of intensity of light

Optical transfer function, OTF

 $g_0 = \mathscr{F}(I_0) \quad \mathscr{F}():$ Fourier transform $g_i = \mathscr{F}(I_i)$ normalized by it's value at $\mathcal{H} = \mathcal{F}(|\widetilde{\mathbf{h}}|^2)$ $f_x, f_y=0$

Then

OTF is given by autocorrelation of CTF

Example of OTR

Lens has pupil of radius r and focal length d_i

Cut off frequency of OTR

twice of CTF cut off frequency

$$f_0 = 2 \times \frac{2\pi r}{\lambda d_i}$$

Influence of aberration

Influence of aberration to frequency response

Phase transmittance

Generalized pupil function

$$p(x, y) = A(x, y)P(x, y) \exp\left(i\frac{2\pi}{\lambda}w(x, y)\right)$$

CTF is given by

$$H(f_{x},f_{y}) = A(\frac{\lambda d_{i}}{2\pi}f_{x},\frac{\lambda d_{i}}{2\pi}f_{y})P(\frac{\lambda d_{i}}{2\pi}f_{x},\frac{\lambda d_{i}}{2\pi}f_{y})\exp\left(i\frac{2\pi}{\lambda}w\left(\frac{\lambda d_{i}}{2\pi}f_{x},\frac{\lambda d_{i}}{2\pi}f_{y}\right)\right)$$

OTF is again given by autocorrelation of CTF

OTF with aberration is sometimes complex, so we use absolute value of OTF, It is called Modulation Transfer Function, MTF

Important general properties of MTF:

- 1. MTF having aberration is always smaller than aberration-free MTF (diffraction limited MTF)
- 2. Cut-off frequency is not changed by aberration
- 3. Zero cross of MTF corresponding to inverse of contrast.

Singlet D=80mm f=1000mm

Doublet D=80mm f=1000mm

Singlet D=80mm f=1000mm λ=0.55μm

Doublet D=80mm f=1000mm λ=0.55μm

Appodization or super resolution

Diffraction without wavefront error

Surface plot of MTF

PSF plot

Diffraction with wavefront error

p-v: 0.82λ, RMS : 0.092λ

Test pattern

Spoke chart

From center to edge, spatial frequency will change higher to lower

Streak camera reflective input optics

Optical performance of reflective relay

OPD<0.055µm

$2\sigma PSF$ width 5.06 μ m

Interesting property of double aperture

Interesting property of double aperture

Extraction mirror with cold finger

Extraction mirror with X-ray absorber

- 1.Width of Diffraction envelope is dominated by single aperture height.
- 2. Inside diffraction envelope is modulated by interference of double aperture.
- 3. PSF including interference is almost same width of diffraction with full aperture, but contrast is more worth the single aperture case due to surrounding fringes. <u>Seems still better than large thermal</u> <u>deformation of mirror.</u>

Conclusions

- 1. Good extraction mirror Identification of extraction mirror deformation is important
- Good optical path design Optical path having no focusing components or double optical path
- 3. Good lens or reflector for focusing system Do not use singlet lens even monochromatic light!
- 4. Good alignment

MTF measurement is very helpful to know performance of your optical system!