Lecture note for ASLS accelerator School

SR monitor lecture 1, 2 and 3

By Prof. Dr.Toshiyuki MITSUHASHI
KEK,

Graduated school for advanced study

Lecture 1 Introduction for the beam instrumentation based on Synchrotron Radiation

Lecture 2 Geometrical optics of focusing system
Lecture 3 Wave optics of focusing system

Lecture 4 Coherence theory of light

Lecture 5 Theory of synchrotron radiation

Lecture 6 Interferometry

Lecture 1

Introduction for the
 Beam instrumentation based on Synchrotron Radiation

Classical Optics is disappearing from curriculum of Universities now!

Some geometrical optics can find in high school physics........

You can buy or find not kind textbooks.

I try to introduce classical optics useful
for beam instrumentation based on
Synchrotron radiation .

1. Introduction

2. Beam instrumentation based on visible SR
3. Popular equipments

1. Introduction

What is the beam instrumentation based on SR ?

What is the beam instrumentation based on SR ?

Measure the fundamental parameters of Accelerator through the transverse and longitudinal profile, size, etc. statistically, or dynamically using Optical technique with the synchrotron radiation.

Light source is normally SR emitted from the bending magnet of accelerator.

Sometimes have dedicated magnet for light source.

Visible SR $400 \mathrm{~nm}-800 \mathrm{~nm}$.
X-ray SR $\quad 0.05-0.3 \mathrm{~nm}$.
VUV region is not used because of difficulty in actual handling.

Based on Visible Synchrotron radiation

1. Transverse

Transverse beam profile or size diagnostics

Lecture on tomorrow

Imaging is simply watch the beam in inside of accelerator with a telescope

The coherence theory of light is given in Lecture 4

Transverse beam profile or size diagnostics

Transverse beam profile or size diagnostics

Longitudinal

Longitudinal beam profile or size diagnostics

2ed order temporal

 coherence(1 ${ }^{\text {st }}$ order coherence)
Streak camera
Intensity interferometry
Auto correlation
Cross correlation

Longitudinal beam profile or size diagnostics

Based on X-ray synchrotron radiation for submicron beam size measurement

Transverse beam profile or size diagnostics

Imaging
Pinhole camera
Fresnel zone plate
Interferometry

K-B mirror (Kirkpatrick-Batz mirror)

Transverse beam profile or size diagnostics

Imaging
Pinhole camera
Fresnel zone plate
K-B mirror
Few $\mu \mathrm{m}$

Interferometry
X-ray interferomter

Sub $\mu \mathrm{m}$

Transverse beam profile or size diagnostics
$1^{\text {st }}$ and 2ed order
spatial coherence

Imaging
Interferometry
Fresnel zone plate
X-ray interferomter
K-B mirror (Kirkpatrick-Batz mirror)
Few $\mu \mathrm{m}$
Sub $\mu \mathrm{m}$

2. SR monitor based on visible SR

Set up of SR monitor

Synchrotron radiation Optical path to dark room Key components and it's design

Synchrotron radiation from Bending Magnet

bending magnet - a "sweeping searchlight"

 from ensemble of$L \approx \frac{\rho}{\gamma^{3}} \quad$ range of μm independent electrons
$\tau \approx \frac{\rho}{c \gamma^{3}} \quad$ range of $f s$
$\omega_{c} \approx \frac{c}{L} \approx\left(\frac{c}{L}\right) \cdot \gamma^{3}>10^{12} \mathrm{~Hz}$

Narrow opening angle

Very wide range in spectrum

Visible light to X-ray

Detail of the synchrotron radiation is in Lecture 5

Components in optical beamline

Set up of SR monitor

1. Extraction mirror

Beryllium extraction mirror

Photon Factory $\quad \mathrm{E}=2.5 \mathrm{GeV}, \rho=8.66 \mathrm{~m}$

2

Beryllium extraction mirror for the B-factory $\mathrm{E}=3.5 \mathrm{GeV}, \rho=65 \mathrm{~m}$

Deformation of extraction mirror in the case of X-rays in center

Blue-Green500nm

X-Ray0.1nm

Beryllium extraction mirror for the B-factory $\mathrm{E}=3.5 \mathrm{GeV}, \rho=65 \mathrm{~m}$

Surface deformation for Be mirror of type used at KEKB 200W (ten times intense) beam will come in Supper KEKB.

Example of mirror surface deformation by X-ray irradiation

Distortion of the beam image due to deformation of the extraction mirror

Wavefront error due to deformation of the extraction mirror is key point in the SR monitor!!

How to identify wavefront error Due to deformation of extraction mirror

1. Fieau interferometer

2. Schack-Hartmann method

3. Ray tracing using Hartmann mask

1. Fieau interferometer $1^{\text {st }}$ order coherence

2. Schack-Hartmann method Geometrical optics
3. Ray tracing using Hartmann mask Geometrical optics

1. Fizeau interferometer

Surface of Be mirror without beam

hit ENTER to continue

Surface of Be mirror

 50 mA
hit ENTER to continue

Geometrical ray tracing
Spot diagram

Surface of Be mirror

75mA

hit ENTER to continue

Surface of Be mirror

125 mA
hit ENTER to continue

2. Schack-Hartmann method

$\frac{d W(x)}{d x}=-\frac{\Delta x}{f}$

Practical set up of Schack-Hartmann method

object

image

Projection optics

Magnification $\quad \frac{1}{m}=\frac{x^{\prime}}{x}=\frac{f_{2}}{f_{1}}$
Gradient on image $\frac{d z^{\prime}}{d x^{\prime}}=m \frac{d z}{d x}$

Local gradients on mirror are magnified by angular magnification of relay system

Image relay lens system(20:1)
Be-mirror

hit ENTER to continue

3. Ray tracing by Hartmann mask

Ray tracing by Hartmann mask

Projection of rays

Observation plane

Displacement of spots due to local gradients on mirror are magnified by long optical lever

Characterization of mirror deformation due to SR irradiation by the use of Hartmann screen

Hartmann square screen Diameter of hole 1mm $10 \times 10,5 \mathrm{~mm}$ spacing

Spots pattern on observation plane by square hole array

280mA

Wavefront error due to thermal deformation of extraction mirror From 300mA to 450 mA at the Photon Factory, KEK

Let's put wavefront at 300 mA into null, and observe wavefront distortion

320mA

340mA

360mA

400 mA

430mA

450mA

450 mA

Comparison of these methods to identify the wavefront distortion

1. Fizeau interferometer

Coherent method: very week for floor vibrations
Sensitivity: $\quad \lambda / 5-\lambda / 10$ (depend on reference plate)
Device location: In front of mirror
Optical path: Not included
Other: Non destructive, Expensive
2.Shack-Hartmann

Incoherent method: strong for floor vibrations
Sensitivity:
$\lambda / 5-\lambda / 10$ (depends on angular magnification)
Device location: In front of mirror
Optical path: Not included
Other: Non destructive, Expensive
3.Hartmann screen

Incoherent method: strong for floor vibrations
Sensitivity:
Device location:
Optical path:
Other:
$\lambda / 5-\lambda / 10$ (depends on optical lever length)
Mask locates in front of mirror
Included
Destructive, Cheep

Idea for extraction mirror with X-ray absorber

Absorber

Extraction mirror with X-ray absorber

2. Glass window for the extraction of visible SR

General design of the glass window. In this figure, (a): metal O-ring, (b): vacuum-side conflat flange, (c): optical glass flat, (d): airside flange.

Transmitted wavefront measured with interferometer wavefront error is less than $\lambda / 20$

hit Diries to comtime

3.Optical path layout

Normaly, 10-20m, but sometinmes very long!

Important points

Air tight structures surrounding of optical line are very important to escape from air turbulence.

Both end of optical line must be closed by glass window to making it air tight.

Mirror with its holder used for the optical path

Surface quality: $\lambda / 10$

Installation of optical path ducts and boxes at the KEK B-factory

Relay lens installed in the optical path duct

3. Popular equipments in down stream of optical path

Most fundamental equipment ; focusing system to observe the beam image

Entrance aperture

Aberration-free lens
Achromat or
Apochromat f=500
to 1000 mm

Typical image of the beam

Dynamical observation of beam profile with high-speed gated camera

Function of high-speed gated camera

Turn by turn image of injected beam into storage ring

$$
\text { C:FDouments and Settings\%uedayMy Documents¥measurement2004झinjection¥s... } \quad \text { O }
$$

Optimization of injection

Optimization for Kicker bump

Beam profile without kicker magnet

Beam profile with kicker magnet

Streak camera to measure longitudinal profile

Result of bunch length at rage between 0.2 mA to 70 mA

Error in bunch length measurement due to chromatic aberration

Result of bunch length measurement at the Photon Factory by white ray (non-monochromatic)

Dynamical observation for beam instability using the streak camera

Observation of transverse quadruple motion in the vertical beam profile

Head-tail oscillation

Longitudinal profile oscillation

Focusing components are used everywhere in the SR monitor!

Optics to understand focusing system is most important issue in the SR monitor

Lecture 2

Geometrical optics of focusing system

Geometrical optics of

focusing system

Thin lens approximation

Newton's equation for thick lens

Conjugation points
$\beta=\frac{y_{k}^{\prime}}{y_{1}}=-\frac{x^{\prime}}{f^{\prime}}=\frac{f}{x}$
P: front focus point P': back focus point
H : front principal point
H': back principal point

Longitudinal magnification

$\frac{\Delta x_{1}}{\Delta x_{2}}=\frac{d x_{1}}{d x_{2}}=\frac{d}{d x_{2}}\left(-\frac{f^{2}}{x_{2}}\right)=\frac{f^{2}}{x_{2}^{2}}=\beta^{2}$

Longitudinal magnification is given by square of transverse magnification

What is principle points H and H '?

How about this combination?

Where is back principal point?

Where is back principal point?

Telephoto lens

Where is front principal point?

Telephoto lens

Where is front principal point?

Telephoto lens

How about this combination?

How about this combination?

Letro focus lens

How about this combination?

$\mathbf{H}_{\text {b }}$

Letro focus lens

Aberration in Seidel's region

1. Piston
2. Tilt
3. Spherical (appear in on axis)
4. Comma (appear in off axis)
5. Astigmatism (appear in on axis)
6. Distortion (uneven wavefront error)

In the focusing system which used in SR monitor, image will appear in narrow field around optical axis.

In this case, most important aberration is on-axis spherical aberration.

For understanding the spherical aberration, let us start with focusing mirror system by ellipsoidal surface.

Spherical aberration

1. Ellipsoidal surface

1. Ellipsoidal surface

2.Spherical surface

Parabolic surface

Parabolic surface

If the parallel light will come to

 spherical surface,Light withot focus on F, and it is Spherical aberration

What is definition of focal length??

What is definition of focal length??

Only discuss with paraxial rays,

 We can define focal length of the lens!

At average focus point, spherical aberration Looks;

Representation of spherical aberration

Δf as a function of aperture height

Paraxial focusing point

How to correct spherical aberration?

Off course, we shall use non-spherical surface for reflective system, but
How we can do in the refractive (lens) system?

Spherical aberration

Focusing lens +Spherical aberration

Defocusing lens -Spherical aberration

Front focus $\quad f=\frac{f_{1} \cdot f_{2}}{f^{\prime}{ }_{1}+f_{2}-d}$
$\mathbf{d} \neq 0$
$f, f^{\prime} \neq \infty$
Back focus $\quad f^{\prime}=\frac{f_{1} \cdot f^{\prime}{ }_{2}}{f_{1}^{\prime}+f^{\prime}{ }_{2}-d}$

Spherical aberration plot

Under correction \rightarrow
Entrance pupil height

Focal shift

Over correction

Under correction

Full correction

Over correction

Chromatic aberration

Concept of achromatic lens

Focusing lens +dispersion

Defocusing lens -dispersion

Certain combination of focusing and defocusing lens can cancel focal shift

Chromatic aberration plot

Astigmatism due to troidal focusing power

extraction mirror
objective lens

tangential focus

balanced astigmatism point

Comma due to
 tilted incidence

Input ray with incident angle of ω

Alignment error (tilt) of lens also produce comma

Alignment error (tilt) of lens also produce comma

Lens has often has a wedge component!

More general theory for aberrations

Zernike's circule polynomial and aberration coefficients.

Zernike's circule polynomial for expansion of wavefront sag.

$$
\begin{aligned}
W(x, y) & =W(\rho \sin \theta, \rho \cos \theta)=W(\rho, \theta) \\
& =\sum_{n=0}^{k} \sum_{m=0}^{n} A_{n m} \cdot R_{n}^{n-2 m}(\rho) \cdot \begin{cases}\cos |n-2 m| \theta & : n-2 m \geq 0 \\
\sin |n-2 m| \theta & : n-2 m<0\end{cases} \\
E_{n}^{n-2 m}(\rho) & =\sum_{s=0}^{m}(-1)^{s} \frac{(n-s)!\rho^{n-2 s}}{s!(m-s)!(n-m-s)!}
\end{aligned}
$$

Aberration coefficients
A_{0}^{0} : Piston $\quad \mathrm{A}_{4}^{0}$:spherical
$\mathbf{B}_{1}^{1}:$ Tilt in \mathbf{y}
A_{1}^{1} : Tilt in \mathbf{x}
A_{2}^{0} : Focus shift
B_{2}^{2} : Astigmatism in diagonal
A_{2}^{2} : Astigmatism

Graphical drawing of Zernick's aberration function

Conclusions from Geometrical Optics

Focusing system has many aberrations, even on optical axis!

This error is very often not smaller than diffraction width!

Careful analysis of aberrations is important!

Excise

Which is correct combination of two doublets?

Lecture 3

Wave optics of focusing system

Wave optics for
 focusing system

Dififraction

Diffraction geometry

$$
\begin{aligned}
& \mathbf{U}\left(\mathrm{p}_{0}\right)=\iint_{\Sigma} \mathbf{h}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right) \mathbf{U}\left(\mathrm{P}_{1}\right) \mathrm{dx}_{1} \mathrm{dy}_{1} \\
& \mathbf{h}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=\frac{1}{\mathrm{i} \cdot \lambda} \frac{\exp \left(\mathrm{i} \cdot \mathrm{k} \cdot \mathrm{r}_{01}\right)}{\mathrm{r}_{01}} \cos \left(\overrightarrow{\mathrm{n}}, \overrightarrow{\mathrm{r}}_{01}\right) \\
& \text { Secondary spherical wave }
\end{aligned}
$$

Paraxial approximation

> Obliquity factor $\cos \left(\overrightarrow{\mathrm{n}}, \overrightarrow{\mathrm{r}}_{01}\right) \cong 1$

Aperture

$$
\left|\overrightarrow{\mathbf{r}}_{01}\right| \cong \mathbf{Z}
$$

$$
\begin{gathered}
\mathbf{U}\left(\mathrm{p}_{0}\right)=\iint_{\Sigma} \mathbf{h}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right) \mathrm{U}\left(\mathrm{P}_{1}\right) \mathrm{dx}_{1} \mathrm{dy}_{1} \\
\mathbf{h}\left(\mathrm{P}_{0}, \mathrm{P}_{1}\right)=\frac{1}{\mathrm{i} \cdot \lambda} \frac{\exp \left(\mathrm{i} \cdot \mathrm{k} \cdot \mathrm{r}_{01}\right)}{\mathrm{r}_{01}} \frac{\cos \left(\overrightarrow{\mathrm{n}}, \overrightarrow{\mathrm{r}}_{01}\right)}{\approx 1} \\
\mathrm{~h}\left(\boldsymbol{P}_{0}, \boldsymbol{P}_{1}\right)=\frac{1}{\boldsymbol{i} \cdot \lambda} \frac{\exp \left(\boldsymbol{i} \cdot \boldsymbol{k} \cdot \boldsymbol{r}_{01}\right)}{\boldsymbol{r}_{01}}
\end{gathered}
$$

The Fresnel approximation for $\mathbf{r}_{\mathbf{0 1}}$ in phase factor

$$
\begin{aligned}
& r_{01}=\sqrt{z^{2}+\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}} \\
& =\mathrm{z} \sqrt{1+\left(\frac{x_{0}-x_{1}}{z}\right)^{2}+\left(\frac{y_{0}-y_{1}}{z}\right)^{2}} \\
& \cong \mathrm{z}\left[1+\frac{1}{2}\left(\frac{\mathrm{x}_{0}-\mathrm{x}_{1}}{\mathrm{z}}\right)^{2}+\frac{1}{2}\left(\frac{\mathrm{y}_{0}-\mathrm{y}_{1}}{\mathrm{z}}\right)^{2}\right]
\end{aligned}
$$

Spherical \Longrightarrow Quadratic phase factor

$$
\mathbf{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{1}, \mathrm{y}_{1}\right)=\frac{\exp (\mathrm{ikz})}{\mathrm{i} \lambda \mathrm{z}} \frac{\exp \left[\frac{\mathrm{ik}}{2 \mathrm{z}}\left[\left(\mathrm{x}_{0}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{0}-\mathrm{y}_{1}\right)^{2}\right]\right]}{\text { Quadratic wave }}
$$

$$
\begin{aligned}
& =\frac{\exp (i k z)}{i \lambda z} \exp \left[\frac{i k}{2 z}\left[x_{0}{ }^{2}+y_{0}{ }^{2}\right]\right] \exp \left[\frac{i k}{2 z}\left[x_{1}{ }^{2}+y_{1}{ }^{2}\right]\right] \\
& \quad \times \exp \left[\frac{i k}{2 z}\left[x_{0} x_{1}+y_{0} y_{1}\right]\right]
\end{aligned}
$$

Fresnel diffraction

The Fraunhofer approximation Very long z

$$
\begin{aligned}
& \frac{\mathrm{ik}}{2 \mathrm{z}}\left[\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}\right] \ll 1 \\
& \exp \left[\frac{\mathrm{ik}}{2 \mathrm{z}}\left[\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}\right]\right] \cong 1
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{1}, \mathrm{y}_{1}\right)= & \exp \frac{\exp (\mathrm{ikz})}{\mathrm{i} \lambda \mathrm{z}} \exp \left[\frac{\mathrm{ik}}{2 \mathrm{z}}\left[\mathrm{x}_{0}{ }^{2}+\mathrm{y}_{0}^{2}\right]\right] \\
& \times \exp \left[\frac{\mathrm{ik}}{2 \mathrm{z}}\left[\mathrm{x}_{0} \mathrm{x}_{1}+\mathrm{y}_{0} \mathrm{y}_{1}\right]\right]
\end{aligned}
$$

Fraunhofer diffraction

Diffraction by slit height 10 mm

> (a)
> $R=100 \mathrm{~m}$

(c)

(d)
$R=1000 \mathrm{~m}$

Propagation of light in free space by few 10 m

σ
Fresnel diffraction!

Fraunhofer diffraction: few km

Pupil with Lens

Pupil with Lens

Paraxial Lens transfer function \mathfrak{t}_{l}

$$
\begin{aligned}
\mathrm{t}_{l}(\boldsymbol{x}, \boldsymbol{y}) & =\exp \left[i k\left(l_{0}+(n-1) l_{0}-\frac{1}{2 f}\left(x^{2}+\boldsymbol{y}^{2}\right)\right)\right] \\
& =\exp \left(i \boldsymbol{k} l_{0}\right) \exp \left[i k(n-1) l_{0}\right] \exp \left(-i \frac{\boldsymbol{k}}{2 f}\left(\boldsymbol{x}^{2}+\boldsymbol{y}^{2}\right)\right)
\end{aligned}
$$

Physical meaning of paraxial lens transfer function

Plane wave

Spherical
(quadratic) wave

Diffraction with lens

Step 1
Fresnel Transform of U'ı

$$
\begin{aligned}
& \mathbf{U}_{1}^{\prime}(\mathrm{x}, \mathrm{y})=\mathbf{P}(\mathrm{x}, \mathrm{y}) \mathrm{t}_{1}(\mathrm{x}, \mathrm{y}) \mathbf{U}_{1}(\mathrm{x}, \mathrm{y}) \\
& =\mathbf{P}(\mathrm{x}, \mathrm{y}) \mathbf{U}_{1}(\mathrm{x}, \mathrm{y}) \exp \left[-\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)=\frac{\exp \left[\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}{ }_{\mathrm{f}}+\mathrm{y}_{\mathrm{f}}^{2}\right)\right]}{\mathrm{i} \lambda \mathrm{f}} \\
& \times \iint_{\Sigma} \mathrm{U}_{1}(\mathrm{x}, \mathrm{y}) \exp \left(-\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left[\frac{\mathrm{ik}}{2 \mathrm{f}}\left[\mathrm{xx}_{\mathrm{f}}+\mathrm{yy}_{\mathrm{f}}\right]\right] \mathrm{dxdy} \\
& \begin{array}{l}
\begin{array}{l}
\text { Lens transfer } \\
\text { function }
\end{array} \\
\text { Quadratic wave }
\end{array}
\end{aligned}
$$

As the result;

$$
\begin{aligned}
& \mathbf{U}_{f}\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)=\frac{\exp \left[\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}{ }_{\mathrm{f}}+\mathrm{y}_{\mathrm{f}}^{2}\right)\right]}{\mathrm{i} \lambda \mathrm{f}} \text { Plane wave } \\
& \times \iint \mathbf{U}_{1}(\mathrm{x}, \mathrm{y}) \mathrm{P}(\mathrm{x}, \mathrm{y})\left[\exp \left[\frac{\mathrm{ik}}{2 \mathrm{f}}\left[\mathrm{xx}_{\mathrm{f}}+\mathrm{yy}_{\mathrm{f}}\right]\right] \mathrm{dxdy}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)=\frac{\exp \left[\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}{ }_{\mathrm{f}}+\mathrm{y}^{2} \mathrm{f}\right)\right]}{\mathrm{i} \lambda \mathrm{f}} \\
& \left.\left.\times \iint_{\Sigma} \mathrm{U}_{1}(\mathrm{x}, \mathrm{y}) \exp \left(-\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)\right] \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)\right] \exp \left[\frac{\mathrm{ik}}{2 \mathrm{f}}\left[\mathrm{xx}_{\mathrm{f}}+\mathrm{yy}_{\mathrm{f}}\right]\right] \mathrm{dxdy} \\
& \begin{array}{l}
\begin{array}{l}
\text { Lens transfer } \\
\text { function }
\end{array} \\
\text { Quadratic wave }
\end{array}
\end{aligned}
$$

As the result;
$\mathbf{U}_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{f}}, \mathrm{y}_{\mathrm{f}}\right)=\frac{\exp \left[\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}{ }_{\mathrm{f}}\right.\right.}{\mathrm{i} \lambda \mathrm{f}} \begin{aligned} & \text { Fourier transform } \\ & \text { of pupil function }\end{aligned}$
$\times \iint \mathbf{U}_{1}(\mathrm{x}, \mathrm{y}) P(\mathrm{x}, \mathrm{y}) \exp \left[\frac{\mathrm{ik}}{2 \mathrm{f}}\left[\mathrm{xx}_{\mathrm{f}}+\mathrm{yy} \mathrm{y}_{\mathrm{f}}\right]\right] \mathrm{dxdy}$

Diffraction on image plane

1. $\mathrm{U}_{0}\left(\mathbf{x}_{\mathrm{n}}, \mathrm{y}_{0}\right) \longrightarrow \mathrm{U}_{\mathbf{l}}(\mathbf{x}, \mathbf{y})$

Fresnel transform

$\mathbf{U}_{1}(\mathrm{x}, \mathrm{y})=\iint \mathbf{U}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{~d}_{0}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left[\frac{\mathrm{ik}}{2 \mathrm{~d}_{0}}\left[\mathrm{x}_{0} \mathrm{x}+\mathrm{y}_{0} \mathrm{y}\right]\right] \mathrm{dx}_{0} \mathrm{dy}_{0}$

2. $\mathbf{U}_{1}(\mathbf{x}, \mathrm{y}) \longrightarrow \mathbf{U}^{\prime}{ }_{1}(\mathrm{x}, \mathrm{y})$

Lens transform

$\mathbf{U}^{\prime}(\mathrm{x}, \mathrm{y})=\mathrm{t}(\mathrm{x}, \mathrm{y}) \mathrm{U}_{1}(\mathrm{x}, \mathrm{y})$
$=\iint \mathbf{U}^{\prime}(\mathrm{x}, \mathrm{y}) \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left(-\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{~d}_{0}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)$
$\times \exp \left[\frac{i k}{2 d_{0}}\left[\mathrm{x}_{0} \mathrm{x}+\mathrm{y}_{0} \mathrm{y}\right]\right] \mathrm{dx}_{0} \mathrm{dy}_{0}$

3. $\mathbf{U}^{\prime}(\mathbf{x}, \mathbf{y}) \longrightarrow \mathrm{U}_{\mathbf{i}}\left(\mathbf{x}, \mathbf{y}_{\mathbf{i}}\right)$

Fresnel transform

$$
\begin{aligned}
& \mathbf{U}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)= \iint \mathbf{U}^{\prime}(\mathrm{x}, \mathrm{y}) \exp \left(\mathrm { i } \frac { \mathrm { k } } { 2 \mathrm { di } } \left(\mathrm{x}^{2}+\mathrm{y}\right.\right. \\
& \times \exp \left[\frac{\mathrm{ik}}{2 \mathrm{di}}\left[\mathrm{xx}_{\mathrm{i}}+\mathrm{yy} y_{\mathrm{i}}\right]\right] \mathrm{dxdy}
\end{aligned}
$$

Then, h is given by;

$\mathbf{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\iint \mathbf{U}^{\prime}(\mathrm{x}, \mathrm{y}) \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{di}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{~d}_{0}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right)$
$\times \exp \left(-i \frac{k}{2 f}\left(x^{2}+y^{2}\right)\right) \exp \left[\frac{i k}{2 d_{0}}\left[x_{0} x+y_{0} y\right]\right] \exp \left[\frac{i k}{2 d i}\left[x_{i}+y y_{i}\right]\right] d x d y$

Tidy up the equation;

$=($ Quadratic phase factor $) \times \iint \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left[\mathrm{i} \frac{\mathrm{k}}{2}\left(\frac{1}{\mathrm{~d}_{0}}+\frac{1}{\mathrm{~d}_{\mathrm{i}}}-\frac{1}{\mathrm{f}}\right)\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right]$
$\times \exp \left[-i k\left(\left(\frac{x_{0}}{d_{0}}+\frac{x_{i}}{d_{i}}\right) x+\left(\frac{y_{0}}{d_{0}}+\frac{y_{i}}{d_{i}}\right) y\right)\right]$ dxdy $\begin{aligned} & \text { physical meaning } \\ & \text { is not clear! }\end{aligned}$

Then, h is given by;

$$
\begin{aligned}
& \mathbf{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\iint \mathbf{U}^{\prime}(\mathrm{x}, \mathrm{y}) \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{di}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left(\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{~d}_{0}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \\
& \times \exp \left(-\mathrm{i} \frac{\mathrm{k}}{2 \mathrm{f}}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right) \exp \left[\frac{\mathrm{ik}}{2 \mathrm{~d}_{0}}\left[\mathrm{x}_{0} \mathrm{x}+\mathrm{y}_{0} \mathrm{y}\right]\right] \exp \left[\frac{\mathrm{ik}}{2 \mathrm{di}}\left[\mathrm{xx}_{\mathrm{i}}+\mathrm{yy}_{\mathrm{i}}\right]\right] \mathrm{dxdy}
\end{aligned}
$$

$=($ Quadratic phase factor $) \times \iint \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left[\mathrm{i} \frac{\mathrm{k}}{2}\left(\frac{1}{\mathrm{~d}_{0}}+\frac{1}{\mathrm{~d}_{\mathrm{i}}}-\frac{1}{\mathrm{f}}\right)\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)\right]$ $\times \exp \left[-\mathrm{ik}\left(\left(\frac{\mathrm{x}_{0}}{\mathrm{~d}_{0}}+\frac{\mathrm{x}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}}\right) \mathrm{x}+\left(\frac{\mathrm{y}_{0}}{\mathrm{~d}_{0}}+\frac{\mathrm{y}_{\mathrm{i}}}{\mathrm{d}_{\mathrm{i}}}\right) \mathrm{y}\right)\right]$ dxdy $\begin{aligned} & \text { Excise } \\ & \text { What is physical }\end{aligned}$ meaning of this term?

Answer ;
Return to geometrical optics;
Image plane

Then phase factor $\exp \left[i \frac{k}{2}\left(\frac{1}{d_{0}}+\frac{1}{d_{i}}-\frac{1}{f}\right)\left(x^{2}+y^{2}\right)\right]$ be 1

Then, h becomes

$\mathbf{h}\left(x_{0}, y_{0}: x_{i}, y_{i}\right)=\iint \mathbf{P}(x, y) \exp \left[-i k\left(\left(\frac{x_{0}}{d_{0}}+\frac{x_{i}}{d_{i}}\right) x+\left(\frac{y_{0}}{d_{0}}+\frac{y_{i}}{d_{i}}\right) y\right)\right] d x d y$

Introducing magnification M;

$$
\mathrm{M} \equiv \frac{\mathrm{~d}_{\mathrm{i}}}{\mathrm{~d}_{0}}
$$

$\mathbf{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right) \cong \iint \mathbf{P}(\mathrm{x}, \mathrm{y}) \exp \left[-\frac{\mathrm{ik}}{\mathrm{d}_{\mathrm{i}}}\left(\left(\mathrm{x}_{\mathrm{i}}+\mathrm{Mx}_{0}\right) \mathrm{x}+\left(\mathrm{y}_{\mathrm{i}}+\mathrm{My}_{0}\right) \mathrm{y}\right)\right]$ dxdy
The Fraunhofer diffraction will be appear on image plane with magnification in geometrical optics!

Diffraction patterns for several apertures

Intensity of longitudinal on axis

$$
\begin{aligned}
& N=\frac{a^{2}}{\lambda \cdot f}, \quad U(z)=\frac{2 \pi}{\lambda}\left(\frac{a}{f}\right)^{2} z \\
& V(z)=\frac{U(z)}{1+\frac{U(z)}{2 \pi N}} \\
& I(z)=\left(1-\frac{V(z)}{2 \pi N}\right)\left(\frac{\sin \left(\frac{V(z)}{4}\right)}{\frac{V(z)}{4}}\right)^{2}
\end{aligned}
$$

Longitudinal diffraction pattern for lens $\mathrm{f}=1000 \mathrm{~mm}$,

 $\mathbf{a}=80,40,20 \mathrm{~mm}$

Cross section of longitudinal diffraction pattern

Focal shift dependence to change of aperture diameter due to longitudinal diffraction

Inside and outside beam images around focus point

The diffraction PSF is smeared with aberrations, but we still can feel discontinuity of longitudinal diffraction pattern from this observations.

f-53 f-43
f-33
f-23
f-13

$\begin{array}{lllll}\mathrm{f}+12 & \mathrm{f}+22 & \mathrm{f}+32 & \mathrm{f}+42 & \mathrm{f}+53\end{array}$

Definition of field depth=Full Width at $\mathbf{8}^{\text {th }}$ Maximum

Filed depth
 \neq

$$
\begin{aligned}
& \text { coherent length of light } \\
& \text { (length of wave pocket) }
\end{aligned}
$$

Ensemble of incoherent lights come from source point makes Field depth.

In generally, from this view point Field depth should say as Incoherent field depth

Coherent field depth $=$ length of wave pocket

Impulsive response function in inverse space and CTE, OTLE, MTIT

Let's go to the inverse space!

Let us introduce very important

 parameter, Spatial frequency $f_{x,} f_{\mathbf{y}}$ by$$
\begin{aligned}
& \mathrm{f}_{\mathrm{x}}=\frac{2 \pi \mathrm{x}}{\lambda \mathrm{~d}_{\mathrm{i}}} \\
& \mathrm{f}_{\mathrm{y}}=\frac{2 \pi \mathrm{y}}{\lambda \mathrm{~d}_{\mathrm{i}}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{h}\left(x_{0}, y_{0}: x_{i}, y_{i}\right) & =\iint \mathbf{P}(x, y) \exp \left[-\frac{i k}{d_{i}}\left(\left(x_{i}+M x_{0}\right) x+\left(y_{i}+M y_{0}\right) y\right)\right] d x d y \\
& =M \iint \mathbf{P}\left(f_{x}, f_{y}\right) \exp \left[-i\left(\left(x_{i}+M x_{0}\right) f_{x}+\left(y_{i}+M y_{0}\right) f_{y}\right)\right] d f_{x} d f_{y}
\end{aligned}
$$

Then, we introduce the spatial invariant response function by;

$\tilde{\mathbf{h}}=\frac{1}{\mathrm{M}} \mathbf{h}$
$\tilde{\mathbf{h}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}: \mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)=\iint \mathbf{P}\left(\mathrm{f}_{\mathrm{x}}, \mathrm{f}_{\mathrm{y}}\right) \exp \left[-\mathrm{i}\left(\left(\mathrm{x}_{\mathrm{i}}+\mathrm{Mx}_{0}\right) \mathrm{f}_{\mathrm{x}}+\left(\mathrm{y}_{\mathrm{i}}+\mathrm{My}_{0}\right) \mathrm{f}_{\mathrm{y}}\right)\right] \mathrm{df}_{\mathrm{x}} \mathrm{df} \mathrm{f}_{\mathrm{y}}$
Now we stand in front of entrance for the inverse space!

Consider

propagation of Field of light

Let us consider in inverse space

Coherent transfer function, CTF
input
Go

output
Gi

What is coherent illumination?
Disturbance of illumination U_{c} is represented by:

$$
\mathbf{U}_{\mathrm{c}}=\frac{\operatorname{A\operatorname {exp}(ikz)}}{i \lambda z} \exp \left[i \frac{k}{2 z}\left(x^{2}+y^{2}\right)\right]
$$

if z becomes very large, U_{c} becomes plane wave.

Example: CW Laser such as $\mathrm{He}-\mathrm{Ne}$ Laser

$\mathrm{G}_{0}=\mathscr{F}\left(\mathrm{U}_{0}\right) \quad \mathscr{F}(\quad):$ Fourier transform

$\mathrm{Gi}=\mathscr{F}\left(\mathrm{U}_{\mathrm{i}}\right)$
$\mathrm{H}=\mathscr{F}(\tilde{\mathrm{h}})$

Then
$\mathrm{G}_{\mathrm{i}}=\mathrm{HG}_{\mathbf{0}}$

$$
\widetilde{\mathrm{h}}=\mathscr{F}\left(\mathbf{P}\left(\mathbf{f}_{\mathbf{x}}, \mathbf{f}_{\mathbf{y}}\right)\right)
$$

Then,
$\mathbf{H}=\mathscr{F}\left(\mathscr{F}\left(\mathbf{P}\left(\mathbf{f}_{\mathbf{x}, \mathbf{f}}\right)\right)\right)=\mathbf{P}\left(\mathbf{f}_{\mathbf{x},}, \mathbf{f}_{\mathbf{y}}\right)$

Coherent transfer function (CTF) is pupil function it self !

Properties of CTF

Lens has pupil of radius r and focal length di

1. Cut off frequency: $\mathrm{f}_{0}=\frac{2 \pi \mathrm{r}}{\lambda \mathrm{d}_{\mathrm{i}}}$
2. Inside of cut off frequency, information of amplitude, phase will transfer without distortion

Consider

$$
\begin{aligned}
& \text { propagation of } \\
& \text { intensity of light }
\end{aligned}
$$

Optical transfer function, OTF

input

output
\mathbf{g}_{i}

$$
\begin{aligned}
& \mathrm{g}_{0}=\mathscr{F}\left(\mathrm{I}_{\mathbf{0}}\right) \quad \mathscr{\mathscr { F }}(\quad) \text { : Fourier } \\
& \text { transform } \\
& \mathbf{g} \mathbf{i}=\mathscr{F}(\mathbf{I} \mathbf{i}) \\
& \text { normalized by } \\
& \text { it's value at } \\
& \mathscr{H}=\mathscr{F}\left(|\widetilde{\mathbf{h}}|^{\mathfrak{Z}}\right. \\
& \mathbf{f}_{\mathrm{x}, \mathrm{f}_{\mathrm{y}}}=\mathbf{0}
\end{aligned}
$$

Then

$$
\mathbf{g}_{\mathrm{i}}=\mathscr{F} \mathscr{F} \mathbf{g}_{0}
$$

OTF is given by autocorrelation of CTF

$$
\mathscr{E} \mathscr{F}\left(\mathbf{f}_{x}, \mathbf{f}_{\mathbf{y}}\right)=\frac{\iint \mathrm{H}(\xi, \eta) \mathrm{H}\left(\xi-\mathrm{f}_{\mathrm{x}}, \eta-\mathrm{f}_{\mathrm{y}}\right) \mathrm{d} \xi \mathrm{~d} \eta}{\iint|\mathrm{H}(\xi, \eta)|^{2} \mathrm{~d} \xi \mathrm{~d} \eta}
$$

Geometrical meaning of OTR

$$
\mathscr{A} \mathscr{F}\left(\mathbf{f}_{x}, \mathbf{f}_{y}\right)=\frac{\text { area of overlap }\left(\mathrm{f}_{x}, \mathrm{f}_{y}\right)}{\text { total area }}
$$

Example of OTR

 Lens has pupil of radius r and focal length di

Cut off frequency of OTR
twice of CTF cut off frequency

$$
\mathrm{f}_{0}=2 \times \frac{2 \pi \mathrm{r}}{\lambda \mathrm{~d}_{\mathrm{i}}}
$$

Influence of

 aberration
Influence of aberration to frequency response

 Phase transmittance

Amplitude transmittance: $\mathbf{A}(\mathbf{x}, \mathbf{y})$

Generalized pupil function

$p(x, y)=A(x, y) P(x, y) \exp \left(i \frac{2 \pi}{\lambda} w(x, y)\right)$
CTF is given by
$H\left(f_{x}, f_{y}\right)=A\left(\frac{\lambda d_{i}}{2 \pi} f_{x}, \frac{\lambda d_{i}}{2 \pi} f_{y}\right) P\left(\frac{\lambda d_{i}}{2 \pi} f_{x}, \frac{\lambda d_{i}}{2 \pi} f_{y}\right) \exp \left(i \frac{2 \pi}{\lambda} w\left(\frac{\lambda d_{i}}{2 \pi} f_{x}, \frac{\lambda d_{i}}{2 \pi} f_{y}\right)\right)$
OTF is again given by autocorrelation of CTF

OTF with aberration is sometimes complex, so we use absolute value of OTF, It is called Modulation Transfer Function, MTF

Important general properties of MTF:

1. MTF having aberration is always smaller than aberration-free MTF (diffraction limited MTF)
2. Cut-off frequency is not changed by aberration
3. Zero cross of MTF corresponding to inverse of contrast.

Singlet $D=80 \mathrm{~mm} \mathbf{f}=1000 \mathrm{~mm}$

Doublet $\mathrm{D}=\mathbf{8 0} \mathbf{m m} \mathrm{f}=\mathbf{1 0 0 0} \mathrm{mm}$

Singlet $D=80 \mathrm{~mm} f=1000 \mathrm{~mm}$ $\lambda=0.55 \mu \mathrm{~m}$

Doublet $\mathbf{D}=\mathbf{8 0 m m} \mathbf{f}=\mathbf{1 0 0 0} \mathbf{m m}$ $\lambda=0.55 \mu \mathrm{~m}$

Appodization or super resolution

210 Re 	

$\underbrace{3}$

Diffraction without wavefront error

Surface plot of MTF

PSF plot

Diffraction with wavefront error

p-v: 0.82 λ, \quad RMS : 0.092 λ

hit ENTER to continue

hit ENTER to continue

MTE

measurement

Test pattern
 Spoke chart

From center to edge, spatial frequency will change higher to lower

Image of test pattern

Test pattern

Corresponding MTF

Information at corresponding spatial frequencies are not transmitted

Streak camera reflective input optics

Optical performance of reflective relay

OPD $<0.055 \mu \mathrm{~m}$

2σ PSF width $\mathbf{5 . 0 6} \mu \mathrm{m}$

$2 \sigma=5.06 \mu \mathrm{~m}$

Interesting property of double aperture

Interesting property of double aperture

Extraction mirror with cold finger

Extraction mirror with X-ray absorber

1.Width of Diffraction envelope is dominated by single aperture height.
2. Inside diffraction envelope is modulated by interference of double aperture.
3. PSF including interference is almost same width of diffraction with full aperture, but contrast is more worth the single aperture case due to surrounding fringes. Seems still better than large thermal deformation of mirror.

Conclusions

1. Good extraction mirror

Identification of extraction mirror deformation is important
2. Good optical path design

Optical path having no focusing components or double optical path
3. Good lens or reflector for focusing system

Do not use singlet lens even monochromatic light!
4. Good alignment

MTF measurement is very helpful to know
performance of your optical system!

