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2 Passive RC and LRC networks

RC networks are of fundamental im

portance to circuit design. As their effect
is the same in all circuits, their operati

on will be described in some detail,

2.1 The lowpass filter

A lowpass filter is a circuit which passes low-frequency signals unchanged
and attenuates at high frequencies, introducing a phase lag. Figure 2.1 shows the
simplest type of RC lowpass filter circuit.
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Fig. 2.1 Simple lowpass filter

21.1 Frequency-domain analysis

To calculate the frequency response of the circuit, we use th

e voltage divider
formula, written in complex notation as:
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Factoring according to

4=|4]e*
we obtain the frequency response of the absolute value or magnitude and of the
phase shift:
4] = * » @ = —arctan wRC . (2.2)
V1 + w?R3C?

The two curves are shown in Fig. 2.2,
To calculate the 3 dB cutoff frequency f,, we substitute
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Fig. 2.2 Bode plot of a lowpass filter

into Eq. (2.2), which gives

1 1

o= 339 =Re 23)

From Eq. (2.2), the phase shift at this frequency is ¢ = — 45°. L
As we can see from Fig. 2.2, the amplitude-frequency response (4| = U, /U,
can be easily constructed using the two asymptotes:

1) At low frequencies f<f,, |A| =1=0dB.

2) At high frequencies /> f, from Eq. (2.2) |4| = 1/wRC, i.e. the gain is
inversely proportional to the frequency. When the frequency is increased
by a factor of 10, the gain is reduced by the same factor, i.e. it decreases by
20 dB/decade or 6 dB/octave.

3) Atf=f,, 14| =1//2= —3dB.

21.2 Time-domain analysis

In order to analyze the circuit in the time domain, we apply a step function of
voltage to the input, as shown in Fig. 2.3. To calculate the output voltage, we
apply Kirchhoff ’s current law to the (unloaded) output and obtain in accord-
ance with Fig. 2.1

U -U,
‘—R——IC=0.

With I = CU,, we obtain the differential equation

U, for t>0in Case a,

RCUo‘*'Uo:Ui:{O for t>0in Case b.

(24)
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Fig. 23 a and b Step-response of a lowpass filter

It has the following solutions:

Case a: Case b:
Uy(t) = U(l — eRe) ; Uy(t) = Uexe | 23)

This curve is also plotted in Fig. 2.3. We can see that the steady-state values
U,=U, or U,=0 are only attained asymptotically. As a measure of the
response time, a time constant 1 is therefore defined. This indicates how long it
takes for the deviation from the steady-state value to equal 1/e times the step

Response accuracy 37% 10% 1% 0.1%

Response time T 231 461 691

Fig. 2.4 Response time of a lowpass filter

Fig. 2.5 Square-wave response of a lowpass filter for various frequencies

Upper curve: Si=101,
Middle curve: L= 1
Lower curve: =11,
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magnitude. From Eq. (2.5) the time constant is

. 2.6)

The response time for smaller deviations can also be derived from Eq. (2.5).
Figure 2.4 lists a number of important parameters.

If a square-wave voltage of period T is applied as the input signal, the
e-function is truncated after time 7/2 by the subsequent step. Which final value
is obtained at the output depends on the ratio between the time 7/2 and the time
constant 7. This characteristic is clearly illustrated by the oscillogram in Fig. 2.5.

Lowpass filter as an integrating circuit

In the previous section we saw that the alternating output voltage is small
compared with the input voltage if a signal frequency f> f, is selected. The
lowpass filter operates then as an integrating circuit. This property can be
inferred directly from differential Eq. (2.4). Assuming that |U_ | < |U;], it follows
that

RCU,=U,,

1! -~
U,= R!, U,(#)dt + U,(0) .

Lowpass filter as an averaging circuit

For unsymmetrical alternating voltages, the above condition f> f, is not
satisfied. The Fourier expansion in fact contains a constant which is identical to
the arithmetic mean

_ 1T
Ui = 7_,(_‘; Ui(t)dt

where T is the period of the input voltage. If all the higher-order terms of the
Fourier series are combined, a voltage U;(t) is obtained whose characteristic
corresponds to that of the input voltage, but which is displaced from zero such
that its arithmetic mean is zero. The input voltage may therefore be expressed in
the form _

U)=U+Ui® .

For voltage Ui(t), the condition f'> f, can be satisfied; it is integrated, whereas
the DC component is transferred linearly. The output voltage therefore becomes

1 ¢ - ~
U=l UidE + ;. VX))
\.—L,—_/ S’
residual ripple mean value

If the time constant t = RC is made sufficiently large, the ripple is insignificant



U,~U, . (2.8)

2.1.3 Rise time and cutoff frequency

Another parameter for characterizing lowpass filters is the rise time ¢,. This
denotes the time taken for the output voltage to rise from 10 to 90% of the
final value when a step is applied to the input. From the e-function in Eq. (2.5)
we obtain

L = toow — tio, = 7(In0.9 — In0.1) = 1 In9 ~ 2.27 .

Consequently, with J.=12nt

1

tr%3—f;

2.9)

In approximation this relation is also true for higher-order lowpass filters.
If a number of lowpass filters with various rise times ¢, are connected in

series, the resultant rise time is
t, ~ /Z tz (2.10)
i

-4
= < Z f ;2> .
Hence, for n lowpass filters having the same cutoff frequency

A z\’;; - (2.11)

and the cutoff frequency is

2.2 The highpass filter

A highpass filter is a circuit which passes high-frequency signals unchanged
and attenuates at low frequencies, introducing a phase lead. F igure 2.6 shows the
simplest form of RC highpass filter circuit. The frequency response of the gain
and phase shift is again obtained from the voltage divider formula:
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Fig. 2.6 Simple highpass filter
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This yields
1

4] = —
J1 + lw?R2C

The two curves are shown in Fig. 2.7. For the cutoff frequency, we obtain as with
the lowpass filter:

and ¢ = arctan

“RC (2.13)

_ 1
° 2aRC °
At this frequency the phase shift is +45°.

(2.14)
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Fig. 2.7 Bode plot of a highpass filter

As in the case of the lowpass filter, the amplitude-frequency response can be
easily plotted on a double-logarithmic scale using the asymptotes:

1) At high frequencies /> f,, |A| =1 = 0dB.

2) At low frequencies f <f,, from Eq. (2.13) |4| ~ wRC, i.e. the gain is
proportional to the frequency. The slope of the asymptote is therefore
+20 dB/decade or +6 dB/octave.

3) Forf=f,|A|l= l/\/_ = —3dB, as with the lowpass filter.

To calculate the step response, we apply Kirchhoff’s current law to the
(unloaded) output:

d U,
C3 (U -U)—-2=0. 2.15)

With U, = 0, this yields the differential equation
RCU,+U,=0 (2.16)



U,(t) = U,pe "R . 2.17)

The time constant is therefore 1 = RC, as in the case of the lowpass filter.

In order to determine the initial value Uso = U,(t = 0), we have to consider
that at the instant when the input voltage changes abruptly, the capacitor charge
remains unchanged. The capacitor therefore acts as a voltage source of value
U = Q/C. The output voltage accordingly shows the same step AU as the input
voltage. If U; goes from zero to U., the output voltage likewise Jjumps from zero
to U, (see Fig. 2.8a) then decays exponentially to zero again in accordance with
Eq. (2.17).

If the input voltage now goes abruptly from U, to zero, U, jumps from zero
to —U, (see Fig. 2.8b). Note that the output voltage assumes negative values
even though the input voltage is always positive. This distinctive characteristic is
frequently used in circuit design.
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Fig. 28 aand b Step response of a highpass filter

Use as an RC coupling network

If a square-wave voltage periodic in 7 < 7 is applied to the input, the
capacitor charge barely changes during one half-cycle; the output voltage is
identical to the input voltage apart from an additive constant. As no direct
current can flow via the capacitor, the arithmetic mean of the output voltage is
zero. No DC component of the input voltage is therefore transferred. It is this
property which enables a highpass filter to be used as an RC coupling network.

Use as a differentiating circuit

If input voltages with frequencies f < f. are applied, [U,| <|U;|. Conse-
quently, from differential Eq. (2.15)

du,
Uy=RC—!.

Low-frequency input voltages are therefore differentiated.
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Fig. 2.9 Square-wave response of a highpass filter for various frequencies

Upper curve: fi=10f,
Middle curve: fi=f
Lower curve: fi=1s/.

The oscillograms in Fig. 2.9 summarize the transient response of a highpass
filter.

Series connection of several highpass filters

If a number of highpass filters are connected in series, the resultant cutoff
frequency is

fom JXf (2.18)

Consequently, for n highpass filters having identical cutoff frequencies

forfu/n|. (2.19)

2.3 Compensated voltage divider

It is frequently the case that a resistive voltage divider is capacitively loaded,
making it a lowpass filter. The lower the resistance selected for the voltage
divider, the higher the cutoff frequency of the filter. However, limits are imposed
in that the input resistance of the divider should not be reduced below a specified
value.

Another possible way of raising the cutoff frequency is to use a highpass filter
to compensate for the effect of the lowpass filter. This is the purpose of capacitor
C, in Fig. 2.10. It is dimensioned such that the resultant parallel-connected
capacitive voltage divider has the same division ratio as the resistive voltage
divider. Consequently, the same voltage division is produced at high and low
frequencies. This means that

Ck R2

C. R’



