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Common Control Room Measurements

Particle Currents
o Total
o Current distribution ( bunch by bunch currents)
Orbits
Tunes
e Betatron
e Synchrotron
Bunch Profile
e Transverse
e Longitudinal

Bunch Motion, Signatures of Instabilities
e Single-bunch
® Multi-bunch
® Intra-bunch
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Fourler Transforms
Time and Frequency Domains

Fourier transforms
A function f(x) may be Fourier transformed into a function F(s),

F(s) = / F(x) e 2™l (™)
and likewise a function F(s) can be transformed into a function f(x)
f(x) = / F(s)e?™Sds (2)

The Laplace transform is related to the Fourier Transform but involves
an integral from 0 to infinity
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Signals in the Time and Frequency domains Fourier Transforms

Time and Frequency Domains

Discrete Fourier Transform

For systems involving discrete samples of data, such as from sampling
circuits or from samples taken from circulating bunches, the
discrete-time Fourier transform is similar

N-1

1 —i2m(v/N)T
Fiv) = Z; f(r)e2rt/N) (3)
N—1 '
f(T) — Z F(V)eIZW(V/N)T (4)
v=0

There is a related transform, the Z transform, which is the discrete-time
equivalent of the Laplace transform 1AL
d b M\
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Fourler Transforms
Time and Frequency Domains

Convolution of two functions
The convolution of two functions f(x) and g(x) is defined as f(x) x g(x)

00+ 90) = | w)g(x— u)du (5)
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Signals in the Time and Frequency domains

Fourier Transforms

Common Transform Pairs ( from Bracewell)
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Linear Time Invariant Systems

If a system converts an input u(t) into an output y(t)

y(t) = Lu(t)] (6)
the system is linear if for two constants a1 and a2
Llaiur + aptp] = arL[ur (1)) + aolL [ua(1)] - (7)

The response of two inputs is the superposition of the individual
outputs. If an input is only a single frequency w, the output can only
contain that single frequency w.
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Linear Time Invariant Systems

A system is time invariant if for a time delay ¢ the output has shift
invariance, or that

Llu(t)] = y(t) (8)
Llu(t—d)] = y(t —9) (9)
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Impulse Response, Convolution
Impulse response of LTI system

The impulse response [(t) of a system is found by exciting the system
with a §-function in the time domain.

a(t)

T — LTI —»x/\/\/\'

5-2000
8545A1

for a general input u(t) the output is a convolution

y(t) = u(t) = I(t) (10)
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Impulse Response, Convolution
Frequency Response of LTI system
Frequency response H(s) is the transfer function in the frequency

domain. Measured by network analyzer via magnitude and phase vs.
frequency.

A(s) H(s)
W W
W\ —— LTI — W
W .

5-2000
8545A2

For a general input in the frequency domain /(s) the output O(s) is the
product
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Impulse Response, Convolution
Frequency Response and Time Response relationship

The time response is also the inverse transform of the product of the
Fourier transform of the input u(t) and the frequency response H(s)

y(t) = u(t)  I(t) (12)

y(t) = IFT[FT(u(t))H(s)] (13)

For an LTI system, we can measure in either domain, and compute the
response via appropriate convolutions, transforms or inverse
transforms
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Linear Time Invariant Systems Impulse Response, Convolution

The sampling function 111

| m(s)

EEEREEN

)
Fig. 5.4 The shak symbol III(z).

n=oo

m(x)= > d(x—n)

nN=—oo

The I1I is its own Fourier Transform

I1(S) = n_f 5(S - n)

n=—oo

For a sampling rate

m(S)=1/r S 6(S-n/r)
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Impulse Response, Convolution
The sampling function III multiplied by a waveform

111(x)

IEEEEEEE

1
Pig. 5.4 The shah symbol 1M (x).

n=oo
M(x)= > d(x—n)
n=-—oo
f(=z) I(x)f(x)
: ' T OSLAE

Fig. 6.6 The sampling property of 11I(z).
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Impulse Response, Convolution
The sampling function III convolved with a spectrum (
replicating property)

I 11K(x)

EEREEEEE]

Pig. 5.4 The shah symbol 1II(z).

(=) 10I(z) & f(z)

x =
Fig. 5.6 The replicating property of IIl(z).
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A Quiz on LTI Systems

Consider this simple circuit - a voltage divider

W
O Wy O
2

in

out

5-2000
8545A16

Is this an LTI system? Is it ALWAYS an LTI system?
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A Quiz on LTI Systems

Consider this simple circuit - a high-pass filter

Vout

5-2000
8545A17

Here the output is frequency dependent. Is this an LTI system?
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A Quiz on LTI Systems

Consider this simple circuit - a diode clipper ( a limiter)

O AVAVAV O

in Vout
Is this an LTI system? When? What output frequencies are present for

an input at w?. Two signals wy and wo? Does it have an Impulse
Response I(t) ?

John D. Fox (SLAC) Understanding Signals from Beams January 2016 18/30



Common Control Room Instrumentation

Most control rooms contain a mix of commercial, general purpose
instruments and lab-designed, specialized instruments
Basic Instruments - Time Domain Oscilloscopes

¢ Real-Time Oscilloscopes

Digital or analog

Data taken in single continuous triggered sweep
Bandwidth to 2 - 8 GHz Common (gets expensive)
Resolution ( dynamic range) 40 - 50 DB

Waveforn Constructed
with Sample Points
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Common Control Room Instrumentation

Higher bandwidths can be achieved by taking several passes through
the data

e Equivalent-Time ( sampling) Oscilloscopes

¢ Digital or analog
Data taken over multiple triggered sweeps
Bandwidth to 50 + GHz Common (gets expensive)
Requires repetitive waveform
STABLE trigger ( what is risetime on logic signal?)
Resolution of sampler, averaging improves SNR
Related to boxcar integrator

Waveform Constructed
with Sample Points

2nd Acquisition Cyole H H -
3nd Acquisition Oycle H H FL ol A
nth Acquisition Gycle H H LR
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Common RF Instrumentation - Time Domain
reflectometer

Device Under Test
High Speed Oscilloscope: [ ettt
I
e 16 :
s = — % H
1 '
| '
' H
' '
Figure 3. Functional block diagram for a time domain reflectometer Figure 4. Oscilloscope display when E, = 0
XX & 2 k> i
X > o E
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i |
Figure 5. Oscilloscope display when E; # 0
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Common Control Room Instrumentation

Spectrum Analyzer and Frequency domain

e Tuned radio Receiver

analog heterodyned receiver with multiple IF stages

Dynamic Range up to 120dB or more

Bandwidth to 50 + GHz Common (gets expensive)

Requires periodic waveform

Can be set zero span, triggered sweep

Intrinsic relationship between resolution bandwidth, sweep time

Res. BW

Attenuator ::Tﬁg: Mixer Filter Detector Video

Filter

p
Generator

X ==
[ it

Display
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Common Control Room Instrumentation

Spectrum Analyzer and Frequency domain

e FFT ( Fast Fourier Transform) spectrum analyzers

Time domain sampling data acquisition

Bandwidth to 10’s MHz Common (gets expensive)

FFT Band can be heterodyned from higher band

Numeric computation of DFT

Intrinsic relationship between resolution, sampling rate, length of
sequence bandwidth

o Make pretty waterfall displays

B o= e ;g!»
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Network Analyzer - tool of frequency domain measurement
e Swept excitation, swept complex receiver

e Measures ratio of incident and reflected, incident and transmitted
e S parameter ( Scattering Matrix) representation

John D. Fox (SLAC)
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Harmonic Oscillators, a review

Equation of motion X + yx + wé = f(t) where o, = JE

Damping term y proportional to X

hn D. Fox (SLAC)
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Parallel RLC Circuit

| Zi(w)] 4

R e s e e i e
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FIGURE 6.2 A paraliel RLC resonator and its response. (a) The parallel RLC circuit. (b) The
input impedance magnitude versus frequency.
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Fields in a capacitor
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turn an RLC into a cavity
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Use RF cavities in a LINAC

beam | electric
axis fields

magnetic fields

resoriant cavity

Fig.2.8. Disk loaded nceelerating structure for an electron linear nccelerator (schematic)
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A time varying
Electric ( Magnetic)
field

Why? at resonance
build up very large
voltage

Fields oscillate at
resonance frequency

To accelerate -
particles must arrive
at proper time

How do you get the
RF in?
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