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Common Control Room Measurements

Common Control Room Measurements

• Particle Currents
• Total
• Current distribution ( bunch by bunch currents)

• Orbits
• Tunes

• Betatron
• Synchrotron

• Bunch Profile
• Transverse
• Longitudinal

• Bunch Motion, Signatures of Instabilities
• Single-bunch
• Multi-bunch
• Intra-bunch
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Signals in the Time and Frequency domains Fourier Transforms

Time and Frequency Domains

Fourier transforms
A function f(x) may be Fourier transformed into a function F(s),

F (s) =
∫ ∞
−∞

f (x)e−i2πxsdx (1)

and likewise a function F(s) can be transformed into a function f(x)

f (x) =
∫ ∞
−∞

F (s)ei2πxsds (2)

The Laplace transform is related to the Fourier Transform but involves
an integral from 0 to infinity
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Signals in the Time and Frequency domains Fourier Transforms

Time and Frequency Domains

Discrete Fourier Transform
For systems involving discrete samples of data, such as from sampling
circuits or from samples taken from circulating bunches, the
discrete-time Fourier transform is similar

F (ν) =
1
N

N−1∑
τ=0

f (τ)e−i2π(ν/N)τ (3)

f (τ) =
N−1∑
ν=0

F (ν)ei2π(ν/N)τ (4)

There is a related transform, the Z transform, which is the discrete-time
equivalent of the Laplace transform
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Signals in the Time and Frequency domains Fourier Transforms

Time and Frequency Domains

Convolution of two functions
The convolution of two functions f(x) and g(x) is defined as f (x) ? g(x)

f (x) ? g(x) =
∫ ∞
−∞

f (u)g(x − u)du (5)

In pictorial form
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Signals in the Time and Frequency domains Fourier Transforms

Common Transform Pairs ( from Bracewell)
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Linear Time Invariant Systems

Linear Time Invariant Systems

If a system converts an input u(t) into an output y(t)

y(t) = L [u(t)] (6)

the system is linear if for two constants a1 and a2

L [a1u1 + a2u2] = a1L [u1(t)] + a2L [u2(t)] . (7)

The response of two inputs is the superposition of the individual
outputs. If an input is only a single frequency ω, the output can only
contain that single frequency ω.
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Linear Time Invariant Systems

Linear Time Invariant Systems

A system is time invariant if for a time delay δ the output has shift
invariance, or that

L [u(t)] = y(t) (8)

L [u(t − δ)] = y(t − δ) (9)
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Linear Time Invariant Systems Impulse Response, Convolution

Impulse response of LTI system

The impulse response I(t) of a system is found by exciting the system
with a δ-function in the time domain.

LTI

I(t)(t)

5-2000 
8545A1 

for a general input u(t) the output is a convolution

y(t) = u(t) ? I(t) (10)
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Linear Time Invariant Systems Impulse Response, Convolution

Frequency Response of LTI system

Frequency response H(s) is the transfer function in the frequency
domain. Measured by network analyzer via magnitude and phase vs.
frequency.

LTI

H(s)A(s)

5-2000 
8545A2

For a general input in the frequency domain I(s) the output O(s) is the
product

O(s) = H(s)I(s) (11)
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Linear Time Invariant Systems Impulse Response, Convolution

Frequency Response and Time Response relationship

The time response is also the inverse transform of the product of the
Fourier transform of the input u(t) and the frequency response H(s)

y(t) = u(t) ∗ I(t) (12)

y(t) = IFT [FT (u(t))H(s)] (13)

For an LTI system, we can measure in either domain, and compute the
response via appropriate convolutions, transforms or inverse
transforms

John D. Fox (SLAC) Understanding Signals from Beams January 2016 12 / 30



Linear Time Invariant Systems Impulse Response, Convolution

The sampling function X

X(x) =
n=∞∑

n=−∞
δ (x − n)

The X is its own Fourier Transform

X(S) =
n=∞∑

n=−∞
δ (S − n)

For a sampling rate τ

X(S) = 1/τ
n=∞∑

n=−∞
δ (S − n/τ)
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Linear Time Invariant Systems Impulse Response, Convolution

The sampling function X multiplied by a waveform

X(x) =
n=∞∑

n=−∞
δ (x − n)
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Linear Time Invariant Systems Impulse Response, Convolution

The sampling function X convolved with a spectrum (
replicating property)
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Linear Time Invariant Systems A Quiz

A Quiz on LTI Systems

Consider this simple circuit - a voltage divider

R

R

VoutVin

5-2000 
8545A16

Is this an LTI system? Is it ALWAYS an LTI system?
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Linear Time Invariant Systems A Quiz

A Quiz on LTI Systems

Consider this simple circuit - a high-pass filter

C

R

VoutVin

5-2000 
8545A17

Here the output is frequency dependent. Is this an LTI system?
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Linear Time Invariant Systems A Quiz

A Quiz on LTI Systems

Consider this simple circuit - a diode clipper ( a limiter)

R

VoutVin

5-2000 
8545A18

Is this an LTI system? When? What output frequencies are present for
an input at ω?. Two signals ω1 and ω2? Does it have an Impulse
Response I(t) ?
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Most control rooms contain a mix of commercial, general purpose
instruments and lab-designed, specialized instruments
Basic Instruments - Time Domain Oscilloscopes

• Real-Time Oscilloscopes
• Digital or analog
• Data taken in single continuous triggered sweep
• Bandwidth to 2 - 8 GHz Common (gets expensive)
• Resolution ( dynamic range) 40 - 50 DB
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Higher bandwidths can be achieved by taking several passes through
the data

• Equivalent-Time ( sampling) Oscilloscopes
• Digital or analog
• Data taken over multiple triggered sweeps
• Bandwidth to 50 + GHz Common (gets expensive)
• Requires repetitive waveform
• STABLE trigger ( what is risetime on logic signal?)
• Resolution of sampler, averaging improves SNR
• Related to boxcar integrator
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common RF Instrumentation - Time Domain
reflectometer

Time Domain Reflectometry Theory

Application Note

For Use with Agilent 86100 Infiniium DCA
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Spectrum Analyzer and Frequency domain

• Tuned radio Receiver
• analog heterodyned receiver with multiple IF stages
• Dynamic Range up to 120dB or more
• Bandwidth to 50 + GHz Common (gets expensive)
• Requires periodic waveform
• Can be set zero span, triggered sweep
• Intrinsic relationship between resolution bandwidth, sweep timeThe Agilent ESA Spectrum Analyzer

Full measurement 
accuracy after just a 
5 minute warm up.

Built-in tracking 
generator provides 
an RF source for scalar 
network analysis 
(optional).

External mixing extends 
frequency range to 
325 GHz (optional on 
E4407B only).

Weather resistant 
front panel allows 
operation in rain and 
high humidity.

Built-in help function 
eliminates the need 
for reference manuals.

Zoom windows 
provide split screen 
display with both wide 
and narrow spans.

Rugged case with 
rubber encased front 
and rear frames resists 
transportation stresses.

Flexible hardware/software 
environment allows focused 
applications like phase noise 
and modulation analysis.

Built-in 
one-button
measurement 
routines.

Built-in counter precisely 
identifies signals using 
the 1 Hz resolution 
marker-based counter.

Durable, rugged design
8
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Spectrum Analyzer and Frequency domain
• FFT ( Fast Fourier Transform) spectrum analyzers

• Time domain sampling data acquisition
• Bandwidth to 10’s MHz Common (gets expensive)
• FFT Band can be heterodyned from higher band
• Numeric computation of DFT
• Intrinsic relationship between resolution, sampling rate, length of

sequence bandwidth
• Make pretty waterfall displays
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Oscilloscopes, Spectrum Analyzers and Network Analyzers

Common Control Room Instrumentation

Network Analyzer - tool of frequency domain measurement
• Swept excitation, swept complex receiver
• Measures ratio of incident and reflected, incident and transmitted
• S parameter ( Scattering Matrix) representation
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Oscilloscopes, Spectrum Analyzers and Network Analyzers
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A digression on resonators

Harmonic Oscillators, a review

October  2004

Harmonic Oscillators, Revisited

Equation of motion  where

Damping term  proportional to
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A digression on resonators

Parallel RLC Circuit
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A digression on resonators

Fields in a capacitor
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A digression on resonators

turn an RLC into a cavity
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A digression on resonators

Use RF cavities in a LINAC

• A time varying
Electric ( Magnetic)
field

• Why? at resonance
build up very large
voltage

• Fields oscillate at
resonance frequency

• To accelerate -
particles must arrive
at proper time

• How do you get the
RF in?
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