

All the physics you Need To Know

All the physics you Need To Know

Like charges repel, opposites attract

Ohm's 3 Laws

(from U.S. Army Manual)

Ohm's 3 Laws
 (from U.S. Army Manual)

V = IR

Ohm's 3 Laws
 (from U.S. Army Manual)

V $=\mathbf{I R}$
$\mathrm{I}=\mathrm{V} / \mathrm{R}$

Ohm's 3 Laws

(from U.S. Army Manual)

V $=\mathbf{I R}$
$\mathrm{I}=\mathrm{V} / \mathrm{R}$
$\mathbf{R}=\mathbf{V} / \mathbf{I}$

Ohm's 3 Laws

(from U.S. Army Manual)

V = IR
$\operatorname{l}=\mathrm{V} / \mathrm{R}$
$\mathbf{R}=\mathbf{V} / \mathbf{I}$

Ohm's 3 Laws
 (from U.S. Army Manual)

I $=\mathrm{V} / \mathrm{Z}$ (impedance)

$$
\begin{aligned}
V & =I R \\
I & =V / R \\
R & =V / I
\end{aligned}
$$

Beatles or Stones?

A Beatles

B Stones

C who cares?

D 42

Voltage Divider

IF
Vin $=10 \mathrm{~V}$
$\mathrm{R} 1=4 \mathrm{k} \quad \mathrm{R} 2=6 \mathrm{k}$
Then
A. Vout $=4 \mathrm{~V}$
B. Vout $=1.67 \mathrm{~V}$
c. Vout $=6 \mathrm{~V}$

D. Vout $=2.5 \mathrm{~V}$

Voltage Divider

IF
$\mathrm{Vin}=10 \mathrm{~V}$
$\mathrm{R} 1=4 \mathrm{k} \quad \mathrm{R} 2=6 \mathrm{k}$
Then
A. Vout $=4 \mathrm{~V}$
B. Vout $=1.67 \mathrm{~V}$
c. Vout $=\mathbf{6 V}$

D. Vout $=2.5 \mathrm{~V}$

Voltage Divider

A. Vout $=\operatorname{Vin} * R 2 /(R 1+R 2)$
B. Vout $=\operatorname{Vin} *(R 1+R 2) / R 1$
c. Vout $=\operatorname{Vin} * R 1 /(R 1+R 2)$
D. Vout $=$ Vin $*(R 1+R 2) / R 2$

Voltage Divider

A. Vout $=\operatorname{Vin} * R 2 /(R 1+R 2)$
B. Vout $=\operatorname{Vin} *(R 1+R 2) / R 1$
c. Vout $=\operatorname{Vin} * R 1 /(R 1+R 2)$
D. Vout $=$ Vin * $(R 1+R 2) / R 2$

Current Divider

What is I_{1}, the current through $\mathrm{R}_{1 \text { ? }}$

A

$$
I 1=\operatorname{lin} \frac{R 2}{R 1+R 2}
$$

B

$$
\begin{gathered}
I 1=\operatorname{lin} \frac{R 2}{R 1} \\
I 1=\operatorname{Iin} \frac{R 1+R 2}{R 2}
\end{gathered}
$$

- D

$$
I 1=\operatorname{Iin} \frac{R 1}{R 1+R 2}
$$

Current Divider

What is I_{o} ?
A. 1 mA
B. 2 mA
C. 4 mA

D. 8 mA

Current Divider

What is I_{o} ?
A. 1 mA
B. 2 mA
C. 4 mA
D. 8 mA

Current Divider

One of the resistors is changed to 5 k . Which is true about I_{o} ?

A. I_{0} decreases

B. I_{o} increases
C. I_{0} stays the same

Current Divider

One of the resistors is changed to 5 k . Which is true about I_{o} ?

A. I_{0} decreases

B. Io increases
C. I_{0} stays the same

Current Divider

B. 5 k
C. Same current

Current Divider

B. 5 k
C. Same current

Current Divider

Now, how much

 current in the 10k resistor?A. 0
B. 2 mA
C. ∞

Current Divider

Now, how much current in the 10k

 resistor?A. 0
B. 2 mA
C. ∞

Current Divider

What is I_{0} ?

 A. 0

0 k
D. Cannot be determined

Current Divider

What is I_{o} ?

A. 0
B. 2 mA
C. ∞

D. Cannot be determined

Thevenin

Short Circuit Current

$$
I_{\text {sc }}=? \quad \mathrm{~V}_{\text {in }} \quad \sum_{\mathrm{R}_{2}}^{0} \mathrm{~V}_{\text {out }}
$$

A. Vin / (R2 + R1) C. Vin *R1
B. Vin / R2
D. Vin / R1

Thevenin

Short Circuit Current

$$
I_{\text {sc }}=? \quad \mathrm{~V}_{\text {in }} \quad \sum_{0}^{0} \mathrm{~V}_{\text {out }}
$$

A. Vin / (R2 + R1) C. Vin *R1
B. Vin / R2
D. Vin / R1

Thevenin

Open Circuit Voltage

R1
 $\mathrm{V}_{\mathrm{th}}=$?

 $V_{\text {out }}$

A. Vin / (R2 + R1)
B. Vin * $\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)$
C. Vin *R2/R1
D. Vin *R2/(R1+R2)

Thevenin

Open Circuit Voltage

R1
 $V_{t h}=?$

A. Vin / (R2 + R1)
C. Vin *R2/R1
B. Vin * $\mathrm{R} 1 /(\mathrm{R} 1+\mathrm{R} 2)$
D. Vin * R2/(R1+R2)

