Important RF Components Contributed to the ACAS 2016 School

John D. Fox

Applied Physics Department Stanford University Stanford Linear Accelerator Center Work supported by the DOE under contract # DE-AC02-76SF00515 and the DOE LHC Accelerator Research Program LARP

January 2016

John D. Fox (SLAC)

Important RF Components

A B F A B F

A D > A A P >

Outline

- 1 Power Splitters and Combiners
- **2** Hybrid Junctions
- **3** Directional Couplers
- 4 Circulators
- **5** Acknowledgements

John D. Fox (SLAC)

イロト イヨト イヨト イヨト

2 Way, or N Way, power splitters and Combiners

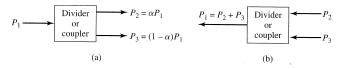
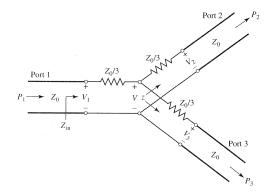
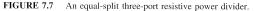


FIGURE 7.1 Power division and combining. (a) Power division. (b) Power combining


- Preserve Characteristic Impedance at each port
- What does a BNC T do?


John D. Fox (SLAC)

★ ∃ > < ∃ >

Restsive Splitter

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

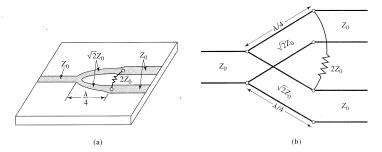
- Preserves Characteristic Impedance at each port
- Does it have any isolation?
- Does it have losses?

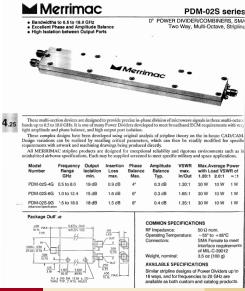
John D. Fox (SLAC)

Important RF Components

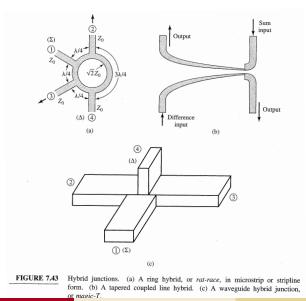
★ Ξ > ★ Ξ >

Wilkinson Power divider




FIGURE 7.8 The Wilkinson power divider. (a) An equal-split Wilkinson power divider in microstrip form. (b) Equivalent transmission line circuit.

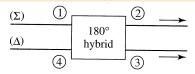
- Preserve Characteristic Impedance at each port
- Does it have losses?
- What signals go in the internal load?


イロン イロン イヨン イヨン

Buy a 2 Way broadband

John D. Fox (SLAC)

Hybrids of 2, 4 or N ports



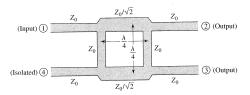
John D. Fox (SLAC)

Hybrid Junctions

2 way 180 degree $\Delta\Sigma$ hybrid

Symbol for a 180° hybrid junction.

$$[S] = \frac{-j}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 1 & 0\\ 1 & 0 & 0 & -1\\ 1 & 0 & 0 & 1\\ 0 & -1 & 1 & 0 \end{bmatrix}.$$


- Preserve Characteristic Impedance at each port
- Does it have losses?
- Can it Add and Subtract?

John D. Fox (SLAC)

Important RF Components

90 Degree Hybrid

Geometry of a branch-line coupler.

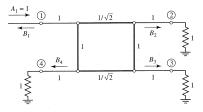
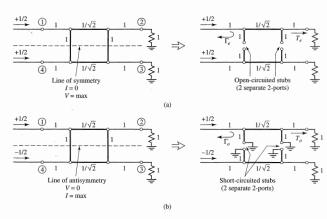


FIGURE 7.22 Circuit of the branch-line hybrid coupler in normalized form.


- What Bandwidth does this work over?
- Does it have losses?
- What signals go to port 4??

E > 4 E >

John D. Fox (SLAC)

90 Degree Hybrid

7.5 The Quadrature (90°) Hybrid

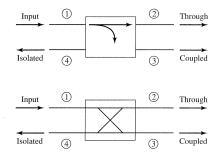
\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

FIGURE 7.23 Decomposition of the branch-line coupler into even- and odd-mode excitations

- What Bandwidth does this work over?
- Does it have losses?
- What signals go to port 4??

John D. Fox (SLAC)

Important RF Components


(4) (2) (4) (3)

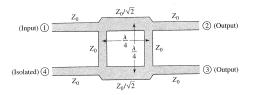
Buy a 90 Degree Hybrid

	M	errim	ac				/QHM-		
	al.	Manmoc				Low Cos	DIVIDER/CO t, Stripline H z to 18 GHz	Hybrid Co Frequency	uplers Range
						Octave and Multi-Octave Models Low Insertion Loss and VSWR			
	Model Number	Frequency Range, GHz	*Coupling Loss, dB	Frequency Sensitivity	Isolation dB min.	Powe Avg. P	er VSWR eak max	Weight oz.(g)	Outlin Ref
	QHM-2M75G QHM-2M-1.5G QHM-2M-3G	0.5 - 1.0 1.0 - 2.0 2.0 - 4.0	$\begin{array}{c} 3.1 \pm 0.6 \\ 3.1 \pm 0.6 \\ 3.1 \pm 0.6 \end{array}$	± 0.5 dB ± 0.5 dB ± 0.5 dB	28 28 22	50 W 3	kW 1.10:1 kW 1.10:1 kW 1.20:1	1.2 (34) 0.85 (24) 0.65 (18)	4 5 1
	QHM-2M-4G CHM-2M-6G JHM-2M-9G	2.6 - 5.2 4.0 - 8.0 6.0 - 12.4	$\begin{array}{r} 3.1 \pm 0.6 \\ 3.2 \pm 0.7 \\ 3.2 \pm 0.7 \end{array}$	± 0.5 dB ± 0.5 dB ± 0.5 dB	20 18 18	50 W 3	kW 1.25:1 kW 1.25:1 kW 1.30:1	0.60 (17) 0.60 (17) 0.60 (17)	2 2 2
	QHM-2M-12G QHM-2M-15G	7.5 - 16.0 12 - 18.0	3.4 ± 0.9 3.4 ± 1.0	± 0.6 dB ± 0.7 dB	15 15		kW 1.40:1 kW 1.40:1	0.65 (18) 0.65 (18)	
	QHM-3M-5G QHM-3M-8G	2.0 - 8.0 4.0 - 12.4	$\begin{array}{r} 3.3 \pm 0.8 \\ 3.3 \pm 0.8 \end{array}$	± 0.4 dB ± 0.4 dB	17 17		kW 1.30:1 kW 1.35:1	1.65 (46) 1.1 (30)	6 7
	*Coupling Loss includes insertion Loss and Frequency Sensitivity Pachase Outline The octave band OHM-2M series an								
	Package Outline $\underbrace{\begin{array}{ c c c c c c c c c c c c c c c c c c $					multi-octas Couplers has stripline con and low VSV variety of ap or combinati as in mixers, MERR designed tf MIL-P-239 accordanc specification	ve QHM-3M ve been desig struction to av WR. They may plications req on of signals 9 modulators ar IMAC Hybi o meet the 971, and may e to this a s. All units ar	series of ned using m chieve high i y be used ir uiring equal 0° out of phase ad phase shif rid Couple requirem ay be orda nd other e available s	Hybri- iniatur- isolation a widd division use, such ters. ers ar ents o ered i simila creene

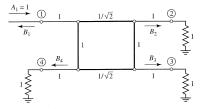
John D. Fox (SLAC)

Directional Coupler

FIGURE 7.4 Two commonly used symbols for directional couplers, and power flow $con \lor \exists x \land tions$.


- What Bandwidth does this work over?
- Does it have losses?
- What happens if you drive port 3?

★ Ξ > ★ Ξ >


\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Even/Odd Analysis of the two port coupler

Geometry of a branch-line coupler.

Circuit of the branch-line hybrid coupler in normalized form. FIGURE 7.22

- What Bandwidth does this work over?
- Does it have losses?
- What signals go to port 4??

> ∢ ≣ -

Microstrip Directional Coupler

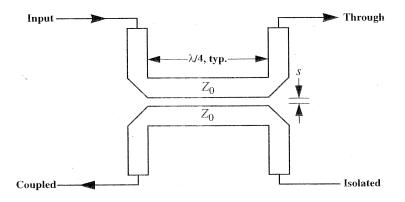
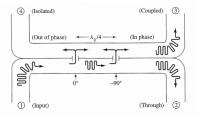
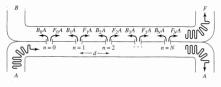


FIGURE 7.46. Classical microstrip directional coupler

- What Bandwidth does this work over?
- Does it have losses?
- What determines the coupling strength?


John D. Fox (SLAC)

Important RF Components



3 1 4 3

Bethe-Style Waveguide Coupler

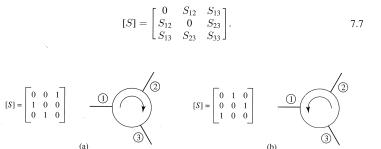
Basic operation of a two-hole directional coupler.

7.19 Geometry of an N + 1 hole waveguide directional coupler.

- What Bandwidth does this work over?
- What is the advantage of lots of holes?

John D. Fox (SLAC)

Important RF Components



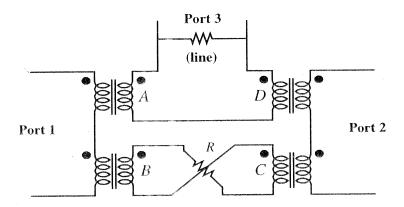
January 2016

15/18

Circulators

Circulators

 $\frac{\text{IGURE 7.2}}{\text{mode 1}}$ The two types of circulators and their [S] matrices. (The phase references for the ports are arbitrary.) (a) Clockwise circulation. (b) Counterclockwise circulation.


- What Bandwidth does this work over?
- Does it have losses?
- How does this work?

John D. Fox (SLAC)

イロト イポト イヨト イヨト

Circulators

An Example - the Telephone Hybrid

FIGURE 7.31. Classic telephone hybrid³⁰

- Why do you want this in a telephone?
- What signals go on each port?

John D. Fox (SLAC)

Important RF Components

3 → 4 3

Giving Credit, where Credit is Due

- Thanks to David Pozar, Microwave Engineering
- Thanks to Tom Lee Planar Microwave Engineering
- For the use of their figures in this talk
- Both have excellent books
- Thanks to Merrimac Corporation for the old catalog figures

A B > A B >

Image: A matrix and a matrix