MRS2017_Scientific Basis for Nuclear Waste Management XLI, 29 October-3 November, 2017, Sydney, AUSTRALIA (ID:75)

Apparent Diffusion Coefficient Consistent with Sorption Derived Based on Changes in Depth Profiles of Radiocaesium in Soil Contaminated by the Fukushima Nuclear Accident and Future Prediction of Depth Profile

Haruo SATO¹ & Masato YOSHII¹

1 Graduate School of Natural Science & Technology, Okayama University, JAPAN

Outline

Introduction

Overview of the Field Investigation

- Investigation location
- Sample extraction in the field
- An example of the investigation results
- Derivation of D_a consistent with K_D based on Change in Depth Profile
 - Normal analysis & analysis from change in depth profile
 - Calculated results of Da & KD
- □ Simulation of Change in Depth Profile of Cs in Soil
 - Numerical analysis
 - Simulated results of depth profile

Conclusions

Introduction

Introduction (1/2)

- The accident at the TEPCO Fukushima Daiichi NPP occurred following the Great East Japan Earthquake in March 2011, and led to the release of volatile radionuclides (RNs), which were deposited on the environment (soils, forests, residential land, etc.) in the Fukushima and the surrounding prefectures.
- Because radiocaesium (Cs-134 & 137) are now the main contributors to radiation dose rate after the decay of short-lived I-131, behaviour of Cs in the environment is important for future prediction.
- The authors conducted twice field investigations on the depth profiles of RNs in soil in the environment of Fukushima after about 3 months (1st investigation) and about 1 year (2nd investigation) following the 1F-NPP accident and reported the apparent diffusion coefficients (D_a) of RNs (Cs-134 & 137, Te-129m, Ag-110m) obtained from the depth profiles and the distribution coefficients (K_D) of RNs (Cs-137 & I-131) obtained from batch experiments so far [e.g., Sato et al., 2013, 2014; Sato, 2015].

Introduction (2/2)

- Consequently, almost all D_a -values of radiocaesium (Cs-134 & 137) were approximately of order 10^{-11} - 10^{-10} m²/s and the batch K_D-values of Cs-137 ranged 2,080-61,000 ml/g in both investigations.
- However, large discrepancies were found between D_a-values & K_D-values.

This cause was considered to be due to that depth profiles obtained in both field investigations included the effect of dispersion by rainwater flow near the surface layer of soil which was unsaturated. This indicates that depth profiles in the deeper part of soil which was almost saturated were formed by mainly diffusion process.

 Therefore, in this study, the D_a-values of radiocaesium consistent with sorption (K_D) were derived based on change in the depth profile.

Furthermore, simulation of the depth profiles of radiocaesium was conducted up to 30 years later after the 1F–NPP accident.

Overview of the Field Investigation

6

Field Investigation

Depth profile investigation of RNs in soil conducted twice at 11 locations in the city of Nihonmatsu & the towns of Kawamata & Namie, which are located between 20km and 60km from 1F-NPP

Sample Extraction in the Field

An example of soil core (1/3 of the rod opens)

Sampling for lab. exps. (physical property, mineral analysis, sorptiondesorption exps., etc.)

- Obtain core samples of about 40-50cm depth by core sampler.
- Obtain samples for lab. exps. (soil physical property, mineral analysis, sorption exps., RN analysis, etc.).
- Obtain samples for concentration profile (2cm pitch up to 20cm depth, 4cm pitch up to 40cm depth, 5cm pitch in the part deeper than 40cm).

Drilling by handheld soil sampler (15cm in inner diameter)

Hydraulic conductivity measurement by water head

Soil samples for lab. exps. (physical property, mineral analysis, sorption-desorption exps., etc.)

An Example of the Investigation Results ₈

D_a-values of Cs for each type of soil calculated from depth profiles

- Sandy/1st investigation/Cs-134
 Sandy/1st investigation/Cs-137
 Organic/1st investigation/Cs-134
 × Organic/1st investigation/Cs-137
 * Former farmland/1st investigation/Cs-134
 Former farmland/1st investigation/Cs-137
 Sandy/2nd investigation/Cs-134
 Sandy/2nd investigation/Cs-137
 Organic/2nd investigation/Cs-134
 Organic/2nd investigation/Cs-137
 × Former farmland/2nd investigation/Cs-137
 × Former farmland/2nd investigation/Cs-137
 × Former farmland/2nd investigation/Cs-137
- Almost all D_a -values of radiocaesium (Cs-134 & 137) were approximately of order 10^{-11} - 10^{-10} m²/s in both field investigations.
- The batch K_D-values of Cs-137 on soil ranged 2,080-61,000 (ml/g, N=103) in both investigations.

However, K_D -values expected from D_a -values are $\leq 20 \text{ ml/g}$ and largely discrepant with batch K_D -values.

Derivation of D_a consistent with K_D based on Change in Depth Profile

Normal Analysis of Da

Diffusion eq. & analytical solution for one-dimensional non-steady state of a planar source consisting of a limited amount of substance

$$\frac{\partial C}{\partial t} = D_a \frac{\partial C}{\partial x^2} - \lambda C = \left\{ \frac{n_p D_p}{n_p + \rho_{th} (1 - n_p) K_D} \right\} \frac{\partial C}{\partial x^2} - \lambda C$$

Initial condition $C(t, x) = 0, t = 0, M = \int_0^{+\infty} C dx$

Boundary condition $C(t, x) = 0, t > 0, x = +\infty$

$$C = \frac{M}{\sqrt{\pi D_a t}} exp\left(-\frac{x^2}{4D_a t} - \lambda t\right)$$
$$lnC = ln\left(\frac{M}{\sqrt{\pi D_a t}}\right) - \frac{x^2}{4D_a t} - \lambda t$$

C: concentration t: time x: depth (distance) D_p : diffusivity in porewater n_p : porosity ρ_{th} : solid density K_D : distribution coefficient λ : decay constant M: total amount of diffusing substance per unit area

10

Analysis of D_a from Change in Depth Profile 11

Logarithm of analytical solution

$$lnC = ln\left(\frac{M}{\sqrt{\pi D_{a}t}}\right) - \frac{x^{2}}{4D_{a}t} - \lambda t$$

Assuming $t_1 \& t_2 (t_2 > t_1)$ as elapsed time after the deposition of radiocaesium, slopes a & b given by a plot of InC versus x^2 can be given by the following Eqs. as $\theta_1 \& \theta_2$ for angle to vertical axis (InC), respectively

 D_{a1} & D_{a2} : apparent diffusion coefficient for elapsed times t_1 & t_2

Calculation of K_D from D_a

12

Relation between D_a & K_D for typical porous media

$$\begin{split} D_a &= \frac{n_p D_p}{n_p + \rho_d K_D} = \frac{n_p D_p}{n_p + \rho_{th} (1 - n_p) K_D} = \frac{n_p D^o}{n_p + \rho_{th} (1 - n_p) K_D} \left(\frac{\delta}{\tau^2}\right) \\ K_D &= \frac{n_p (D^o - 3D_a)}{3\rho_{th} (1 - n_p) D_a} \end{split}$$

- **D°:** diffusion coefficient in free water
- δ : constrictivity (in the case of no interaction of ions with pore wall, $\delta = 1$)
- τ^2 : tortuosity

Analytical condition of K_D

Parameter	Input information & value
n _p (porosity)	Measured data of soil sampled at each investigation location
$ ho_{th}$ (solid density)	
δ (constrictivity)	When pore size is large enough compared to diffusion species (ions), approximately $\delta\!=\!1$
τ^2 (tortuosity)	For uniform and typical porous media, geometrically $\tau^2 = 3$
$D^{o}(m^{2}/s)$	D° for Cs ⁺ ions: $D^{\circ}=2.1 \times 10^{-9}$ (m ² /s, 25°C)

Calculated Results of Da & KD

13

Calculations of $D_a \& K_D$ for each location based on data obtained in twice investigations

 $D_{a} = -\frac{tan\left\{arctan\left(\frac{1}{b}\right) - arctan\left(\frac{1}{a}\right)\right\}}{4(t_{2} - t_{1})} = -\frac{tan\left\{arctan(-4D_{a2}t_{2}) - arctan(-4D_{a1}t_{1})\right\}}{4(t_{2} - t_{1})}$

 $K_D = \frac{n_p (D^o - 3D_a)}{3\rho_{th} (1 - n_p)D_a}$

Investigation location	$D_a (m^2/s)$		$K_D(ml/g)$		
	Cs-134	Cs-137	Cs-134	Cs-137	$K_{\rm D} = 10^3 \sim 10^5 {\rm ml/g}$
Kanaori Nihonmatsu C.	2.76E-14	2.72E-14	9.66E+3	9.82E+3	
Kurabeishi Hiruzone	1.98E-14	1.97E-14	1.98E+4	1.99E+4	$\langle \rangle$
Namie T.	4.53E-14	4.64E-14	8.67E+3	8.46E+3	Consistent
Oshimizu Yamakiya Kawamata T.	1.58E-14	1.36E-14	1.32E+4	1.54E+4	
Mizuzakai Tsushima	6.70E-15	8.38E-15	9.61E+4	7.69E+4	Datab K. saabaaa
Namie T.	1.75E-14	1.06E-14	3.68E+4	3.04E+4	Batch K _D -Values
Matsukiyama Shimo- tsushima Namie T.	2.94E-14	2.07E-14	2.14E+4	1.67E+4	$K_{D}=2,080\sim61,000 \text{ (ml/g)}$
Shiobite Akogi Namie T.	2.37E-14	2.35E-14	1.65E+4	1.67E+4	(N=103)
Kunugidaira Akogi Namie T.	1.22E-14	1.06E-14	2.04E+4	2.37E+4	

Simulation of Change in Depth Profile of Cs in Soil

Numerical Analysis

Governing eq. (D const.)

$$\frac{\partial C}{\partial t} = D \frac{\partial C}{\partial x^2} - \lambda C$$

Initial condition C(t, x) = 0, t = 0, x > 0 $M = \int_{0}^{+\infty} C dx$

Boundary condition $C(t, x) = 0, t > 0, x = +\infty$

Discretization by difference method

$$\frac{\mathbf{C}_{j}^{i+1} - \mathbf{C}_{j}^{i}}{\Delta t} = \mathbf{D} \frac{\mathbf{C}_{j+1}^{i} - 2\mathbf{C}_{j}^{i} + \mathbf{C}_{j-1}^{i}}{(\Delta x)^{2}} - \lambda \mathbf{C}_{j}^{i}$$
$$\therefore \mathbf{C}_{j}^{i+1} = \mathbf{C}_{j}^{i} + \frac{\Delta t}{(\Delta x)^{2}} \mathbf{D} \big(\mathbf{C}_{j+1}^{i} - 2\mathbf{C}_{j}^{i} + \mathbf{C}_{j-1}^{i} \big) - \lambda \mathbf{C}_{j}^{i} \Delta t$$

$$\begin{split} \mathbf{D} &= \mathbf{D}_{a2} \colon \mathbf{0} \leq \mathbf{t} \leq \mathbf{1} \mathbf{y} \\ \mathbf{D} &= \mathbf{D}_{a} \colon \mathbf{1} \mathbf{y} < \mathbf{t} \leq \mathbf{3} \mathbf{0} \mathbf{y} \end{split}$$

2 steps of analyses considered change in D_a

 $C_j^i=C\bigl(t_i,x_j\bigr), \quad t_i=i \Delta t, \quad x_j=j \Delta x, \quad i=0,1,2,3, \cdots , \quad j=0,1,2,3, \cdots \cdots$

Condition for preventing numerical dispersion

$$\frac{\Delta t}{(\Delta x)^2} \mathbf{D} + \frac{\lambda \Delta t}{2} \leq \frac{1}{2}$$

Analytical Condition & Input Data

16

Analytical condition

Analytical location: 9 locations Δt (time step): 86,400sec (=1d) Δx (distance step): 0.01m (=1cm) D=D_{a2} (t≤1y): D_{a2} data for each location (calculated from depth profile after 1y) D=D_a (1y<t≤30y): data for each location

Input data to each location for simulation of depth profile

Investigation leastion	D _{a2} (m ² /s)(t≦1y)		D_a (m^2/s)(t>1y)	Inventory M (Bq/m ²)		
	Cs-134	Cs-137	Cs-134	Cs-137	Cs-134	Cs-137	
Kanaori Nihonmatsu C.	3.41E-11	3.51E-11	2.76E-14	2.72E-14	9.34E+5	9.47E+5	
Kurahajahi Ujuurana Namia T	7.85E-11	8.17E-11	1.98E-14	1.97E-14	1.29E+7	1.26E+7	
	7.85E-11	8.17E-11	4.53E-14	4.64E-14	8.36E+6	8.28E+6	
Oshimizu Yamakiya Kawamata T.	4.75E-11	4.54E-11	1.58E-14	1.36E-14	6.19E+5	6.01E+5	
Minunakai Tauahima Namia T	8.32E-11	1.01E-10	6.70E-15	8.38E-15	6.97E+5	7.11E+5	
WIZUZAKAI ISUSIIIIIA NAIIIE I.	8.32E-11	1.01E-10	1.75E-14	1.06E-14	4.03E+5	4.15E+5	
Matsukiyama Shimotsushima Namie T.	2.26E-11	2.05E-11	2.94E-14	2.07E-14	2.80E+6	2.77E+6	
Shiobite Akogi Namie T.	4.03E-11	4.23E-11	2.37E-14	2.35E-14	2.78E+5	2.78E+5	
Kunugidaira Akogi Namie T.	1.51E-10	1.16E-10	1.22E-14	1.06E-14	7.49E+6	7.45E+6	

Simulated Results of Depth Profile

17

Examples of the simulated results of change in depth profile (Cs-134+137)

Change in depth profile of radiocaesium (Cs-134+137) (left: Shiobite Akogi Namie Town & right: Kunugidaira Akogi Namie Town)

- Depth profiles in soil gradually extended with time, but little change in the formation of the depth profiles is found for 30yrs (this is due to that D_a of Cs is very slow).
- This is consistent with the fact that much percentage of radiocaesium still exists near the surface layer of soil, even now it passed over 6 years after the accident.

Conclusions

- Derived D_a consistent with sorption (K_D) from change in depth profile.
- Simulated change in the depth profiles of radiocaesium (Cs-134 & 137) up to 30 years later after the 1F-NPP accident.
- Moreover, simulated change in air dose rate based on the simulated results of the depth profiles of radiocaesium. The details will be reported in next time.

Thank you for your attention !

Acknowledgements

- The field investigations were conducted as part of the contract work of the Ministry of Education, Culture, Sports, Science and Technology (MEXT).
- The authors would like to thank many scientists and staff of Japan Atomic Energy Agency (JAEA) for conducting the field work, laboratory experiments and documentation together.

APPENDIX

Investigation Outline

Investigation item	1 st investigation	2nd investigation
Investigation (sampling) date	June 7-19 (June 10-16), 2011	Feb. 23-Mar. (Feb. 27-Mar. 8) 10, 2012
Investigation location	11 locations Nihonmatsu C., Kawamata T., Namie T.	11 locations Nihonmatsu C., Kawamata T., Namie T.
Depth distribution	259 samples (16 slices: 11 locations) analysis: Ge semiconductor detector	180 samples (12 cores: 11 locations) analysis: Ge semiconductor detector
Extraction (drilling) method	Geoslicer (wide & handheld): 29 slices wide-sized: 1 slice at 1 location 1.1m wide×1m deep×2cm thick handheld: 28 slices at 11 locations 10cm wide×1m deep×2cm thick	Core sampler (handheld): 19 cores 15cm inner diameter×50cm deep
Soil observation/description	29 slices (all slices)	19 cores (all cores)
Soil physical property	24 samples (11 locations) 2 depth intervals/slice density, porosity, water content, etc.	24 samples (11 locations) 2 depth intervals/core density, porosity, water content, etc.
Classification by elutriation		12 samples (3 locations): 3 cores 3 types of soils (sandy, clayey, organic) clay (<2μm), silt (2-20μm), sand (>20μm)
Mineral analysis (XRD)		12 samples (3 locations): 3 cores 3 types of soils (sandy, clayey, organic) oriented (clay), un-oriented (all samples)
Chemical property (CEC & AEC)		12 samples (3 locations): 3 cores 3 types of soils (sandy, clayey, organic) elutriated samples (clay, silt, sand)
Sorption-desorption exp. (¹³⁷ Cs & ¹³¹ I)	24 samples (11 locations)(only sorption) 2 depth intervals/slice sorption: ionized water	12 samples (3 locations): 3 cores 3 types of soils & elutriated samples sorption: ionized water, desorption: 0.33M-KCl

Examples of Depth Profiles

Correlations of InC versus x² for Cs-137

Upper: 3 months (t_1) , lower: 1 year (t_2) after accident (Yamakiya Kawamata)

22

Upper:3 months (t₁), lower:1 year (t₂) after accident (Mizuzakai Namie)

- Slopes of InC versus x² decrease with increasing time.
- Based on change in slope between times t₁ & t₂, D_a can be calculated.

Calculated Results of Da from Depth Profile 23

Da-values of Cs for each type of soil calculated by normal method

Investigation location	Soil type	D _{a1} (I 1st inve (after 3	m ² /s) stigation months)	D _{a2} (m ² /s) 2nd investigation (after 1 year)		
		Cs-134	Cs-137	Cs-134	Cs-137	
Kazuka Vamakiya Kawamata T		1.70E-11	1.71E-11	3.38E-12	3.19E-12	
Rozuka famakiya Rawamata T.		4.43E-11	4.31E-11			
Kanaori Nihonmatsu C.	Sandy agil	6.63E-11	6.78E-11	3.41E-11	3.51E-11	
Mataukiyama Shimataushima Namia T	Sanuy Soli	1.28E-10	1.32E-10			
		1.06E-10	1.12E-10			
Teshichiro Akogi Namie T.		5.09E-10	5.09E-10			
		1.12E-10	1.14E-10	7 955-11	8.17E-11	
Kurabeishi Hiruzone Namie T.	Organic soil	6.17E-11	6.10E-10	1.05E-11		
				9.18E-11	9.28E-11	
Ohshimizu Yamakiya Kawamata T.		1.04E-10	1.08E-10	4.75E-11	4.54E-11	
Kozuka Yamakiya Kawamata T.		3.05E-10	3.31E-10			
Mizuzakai Tauahima Namia T		1.98E-10	2.01E-10	0 205-11	1015 10	
Mizuzakai isusnima Namie I.	Soil of former	1.23E-10	1.78E-10	0.325-11	1.01E-10	
	farmland	4.97E-11	5.33E-11	2.26E-11	2.05E-11	
Matsukiyama Shimotsushima Namie T.	(including			3.25E-10	2.54E+10	
	flower garden)			1.77E-11	1.86E-11	
Shiobite Akogi Namie T.		7.49E-11	7.71E-11	4.03E-11	4.23E-11	
Kunigidaira Akagi Namia T		1.92E-10	1.91E-10	1.51E-10	1.16E-10	
		4.03E-10	4.03E-10			

Calculated Results of Da & KD

24

D_a & K_D-values of Cs for each type of soil calculated based on change in depth profile between twice investigations

Investigation location	Soil type	Physical property of soil			$D_a(m^2/s)$		$K_{D}(ml/g)$	
		Porosity (%)	Dry density (Mg/m ³)	Solid density (Mg/m ³)	Cs-134	Cs-137	Cs-134	Cs-137
Kanaori Nihonmatsu C.	Sandy soil	50.9	1.159	2.719	2.76E-14	2.74E-14	9.66E+03	9.74E+03
Kurabeishi Hiruzone Namie T.	Organic soil	59.0	0.969	2.566	1.99E-14	1.96E-14	1.98E+04	2.00E+04
					4.53E-14	4.64E-14	8.66E+03	8.46E+03
Ohshimizu Yamakiya Kawamata T.		44.9	1.378	2.729	1.56E-14	1.37E-14	1.34E+04	1.53E+04
Mizuzakai Tsushima Namie	Soil of former	69.8	0.728	2.511	6.69E-15	8.37E-15	9.63E+04	7.70E+04
T.	farmland (including flower garden)				1.76E-14	1.06E-14	3.66E+04	6.08E+04
Matsukiyama Shimotsushima Namie T.		70.2	0.724	2.619	2.93E-14	2.06E-14	2.15E+04	3.05E+04
Shiobite Akogi Namie T.		59.3	1.053	2.604	2.37E-14	2.35E-14	1.65E+04	1.67E+04
Kunugidaira Akogi Namie T.		48.4	1.062	2.631	1.23E-14	1.06E-14	2.04E+04	2.35E+04

• D_a -values are approx. of order 10^{-14} m²/s and movement by diffusion is very slow. \Rightarrow Consistent with the fact that almost all Cs still exists near the surface layer of soil.

Calculated K_D-values are in the range of 10³-10⁵ ml/g, which are consistent with batch K_D-values (K_D=2,080-61,000 ml/g).