

New route for synthesis of Synroc-like ceramic using non-selective sorbent LHT-9

<u>Bella Zubekhina</u>¹, B.Burakov¹, S.Britvin², Yu.Petrov¹, V.Mararitsa³, Yu. Demidov³

¹ V.G. Khlopin Radium Institute (KRI), Saint-Petersburg, Russia
² Saint-Petersburg State University, Russia
³ Socium Ltd., Saint-Petersburg, Russia

Sydney 2017

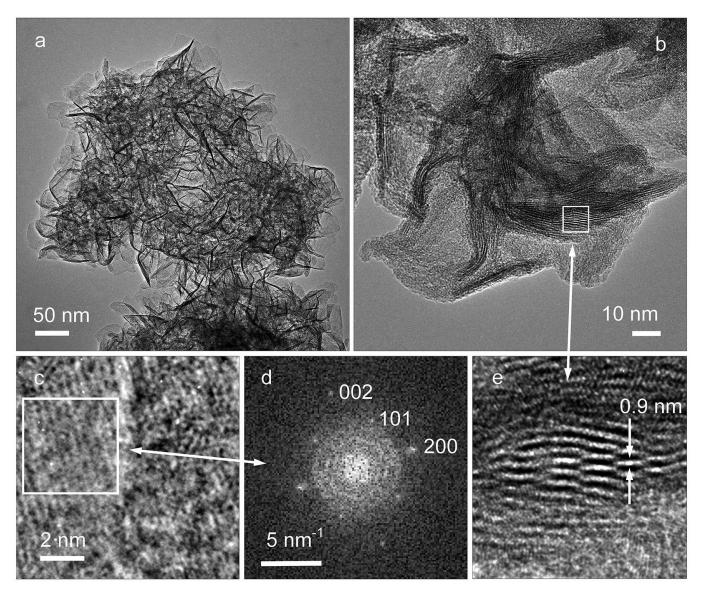
Background

- Synroc is a well known material for immobilization of different radionuclides
- Synroc can be synthesized using HIP (hot isostatic pressing), HUP (hot uniaxial pressing) or cold pressing followed with sintering in air
- The main difficulties of Synrock technology are related to precursor preparation

Preparation of starting precursor (simplified)

Evoparation of liquid RW **Blending with** additives Calcination

Can we optimize this process?


Yes, if we have **non-selective titanate** sorbent

Evoparation Sorption of radionuclides Blending with but from liquid waste additives by non-selective sorbent Calcination

Layered Hydrazinium Titanate (LHT-9)

$(N_2H_5)_{0.5}Ti_{1.87}O_4$

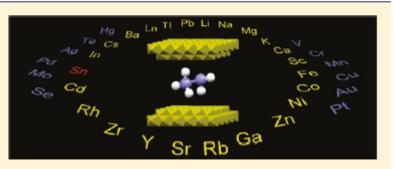
LHT-9: Layered Hydrazinium Titanate – 9 Å

JACS JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Layered Hydrazinium Titanate: Advanced Reductive Adsorbent and Chemical Toolkit for Design of Titanium Dioxide Nanomaterials

Sergey N. Britvin,^{*,†,†} Andriy Lotnyk,[§] Lorenz Kienle,[§] Sergey V. Krivovichev,^{†,†} and Wulf Depmeier^{II}

[†]Department of Crystallography, Geological Faculty, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia


*Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, 184200 Apatity, Murmansk Reg., Russia

[§]Institute for Material Science, Synthesis and Real Structure, University Kiel, Kaiserstrasse 2, 24143 Kiel, Germany

^{II}Institute for Geosciences, University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany

Supporting Information

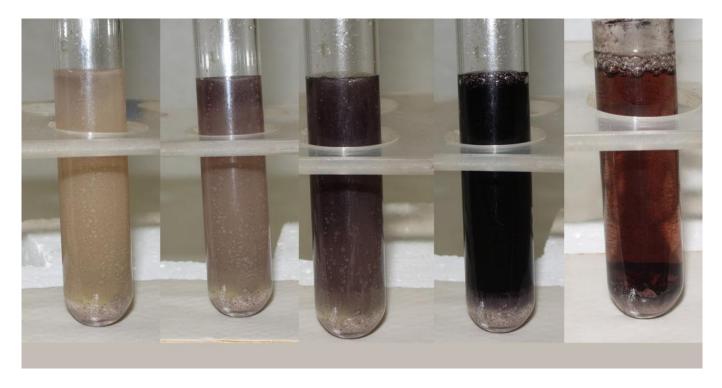
ABSTRACT: LHT-9, a layered hydrazinium titanate with an interlayer spacing of ~9 Å, is a new nanohybrid compound combining the redox functionality of hydrazine, the ion-exchange properties of layered titanate, the large surface area of quasi-two-dimensional crystallites, surface Brønsted acidity, and the occurrence of surface titanyl bonds. LHT-9, ideally formulated as $(N_2H_5)_{1/2}Ti_{1.87}O_4$, relates to a family of lepidocrocite-type titanates. It possesses a high uptake capacity of ~50 elements of the periodic table. Irreversibility of reductive adsorption allows LHT-9 to be used for cumulative extraction

of reducible moieties (noble metals, chromate, mercury, etc.) from industrial solutions and wastewaters. Unlike sodium titanates that do not tolerate an acidic environment, LHT-9 is capable of uptake of transition metals and lanthanides at pH > 3. Adsorption

pubs.acs.org/JACS

Publications about LHT-9

- Britvin S.N., Lotnyk A., Kienle L., Krivovichev S.V., Depmeier W. **(2011)** Layered Hydrazinium Titanate: Advanced Reductive Adsorbent and Chemical Toolkit for Design of Titanium Dioxide Nanomaterials. *J. Am. Chem. Soc., Vol. 133, 9516–9525.*
- Britvin S.N., Korneyko Yu.I., Burakov B.E., Lotnyuk A., Kienle L., Depmeier W., Krivovichev S.V. **(2012)** Sorption of nuclear waste components by layered hydrazinium titanate: a straightforward route to durable ceramic forms. *Scientific Basis for Nuclear Waste Management XXXV, Materials Research Society Symposium Proceedings, Buenos-Aires, Argentina, Vol.* 1475, 190-196.
- Korneyko Yu.I, Britvin S.N., Burakov B.E., Lotnyuk A., Kienle L., Depmeier W., Krivovichev S.V. (2012) Crystalline titanate ceramic for immobilization of Tc-99. *Scientific Basis for Nuclear Waste Management XXXV, Materials Research Society Symposium Proceedings, St. Buenos-Aires, Argentina, Vol.* 1475, 185-190.


sorption

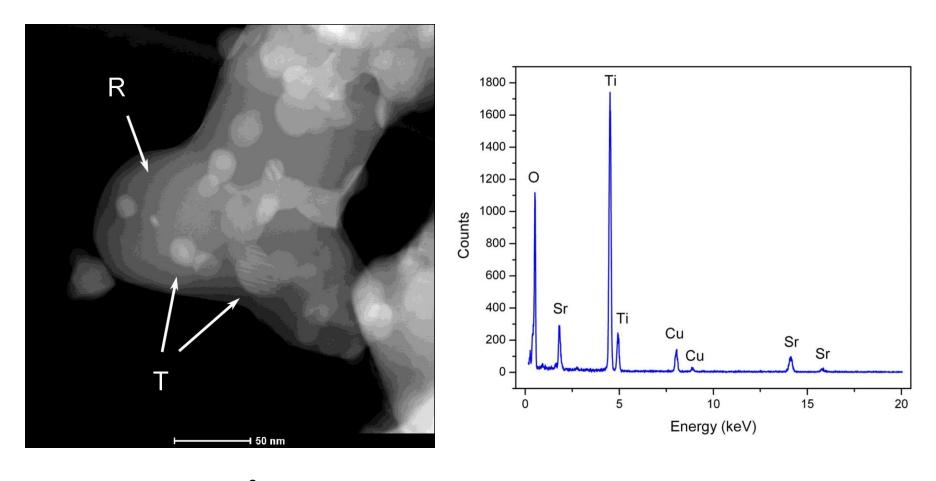
Sorption of real radionuclides in high amounts (extra products after sorption are just water and nitrogen)

Nuclide, compound	Initial concentration	Duration (hours)	Removal, % of injected
⁹⁹ Tc (KTcO ₄ , pH 7)	2 g/L ⁹⁹ Tc	24	93
¹³⁷ Cs (CsNO ₃ , pH 7)	87 MBq/L ¹³⁷ Cs	1.5	94
⁹⁰ Sr (Sr(NO ₃) ₂ , pH 7)	10 MBq/L ⁹⁰ Sr	1.5	90
²³⁹ Pu (PuCl ₃ , pH 3)	40 g/L ²³⁹ Pu	24	95
²³⁸ U (UO ₂ (NO ₃) ₂ , pH 2)	50 g/L ²³⁸ U	24	97

Unique mechanism of Tc sorption accompanied with reduction of Tc⁷⁺ to Tc⁴⁺

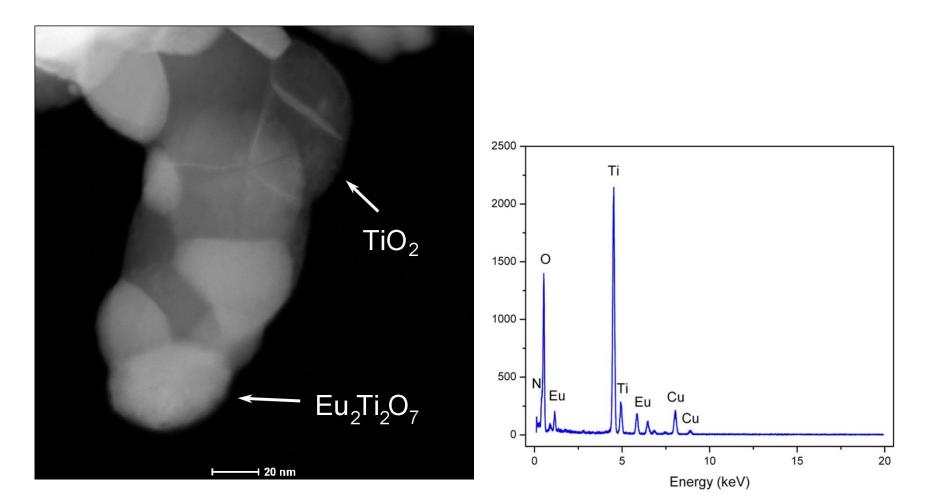
Fast (during 24 h) sorption of Tc from KTcO₄ solution:

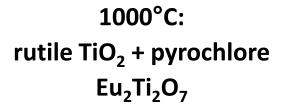
Start 1 min 3 min 30 min 1 day


Dynamic sorption of liquid RW

	Activity, Bq		
	¹³⁷ Cs	¹⁵⁴ Eu	²⁴¹ Am
ILW before sorption V= 85,5 ml	6,2·10 ⁵	3,0·10 ⁵	2,0·10 ⁵
ILW after sorption V= 85,5 ml	~ 33	< 1	< 2
Purification	1,9·10 ⁴	> 3·10 ⁵	> 10 ⁵
Total amount of RN on sorbent, Bq	6,2·10 ⁵	3,0·10 ⁵	2,0·10 ⁵
Concentration in saturated area , Bq/g LHT-9	2,2·10 ⁶	2,1·10 ⁶	1,7·10 ⁶

conversion of spent sorbent into ceramic waste form

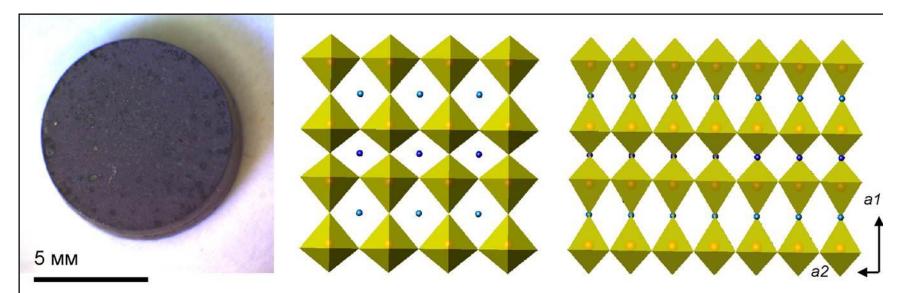

Strontium



1000°C: rutile TiO₂ + tausonite (perovskite) SrTiO₃

~ 8 % Sr

Rare Earths



~ 12 % Eu

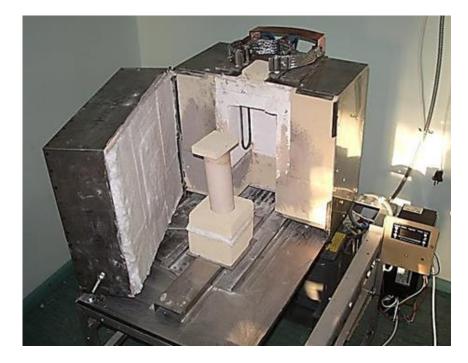
Double-phase Ti-ceramic doped with 12 wt.% Pu-239 obtained after Pu-sorption on LHT-9 from concentrated Pu aqueous solution (Pu content – 40 g/liter)

ceramic pellet and the structure of Pu-perovskite

application of LHT-9: first steps

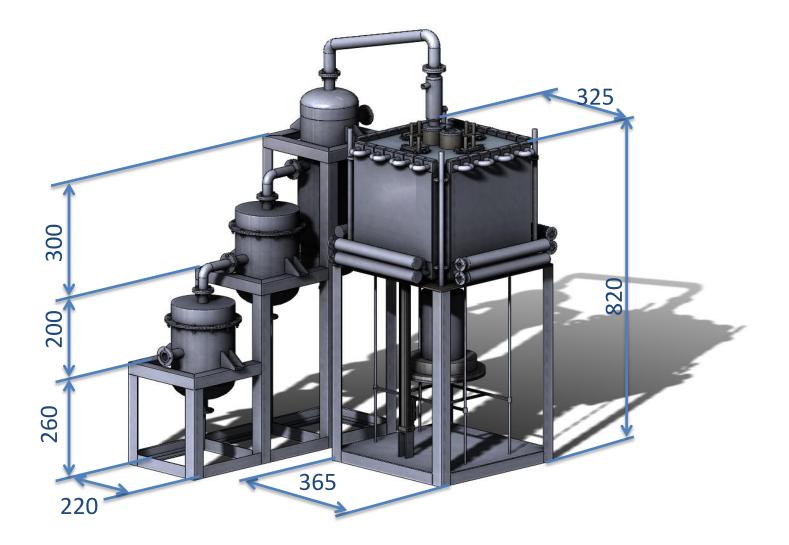
Pilot-scale device for synthesis of LHT-9

Developed and installed at KRI hot-cell facility, 2016


(in the framework of contract with Socium Ltd)

Final stage of installation

First production of sorbent LHT-9 synthesized at KRI


Mobile high-temperature furnace CUB-1 Patent Nº 146714

Modified project of CUB-1 furnace for HLW solidification

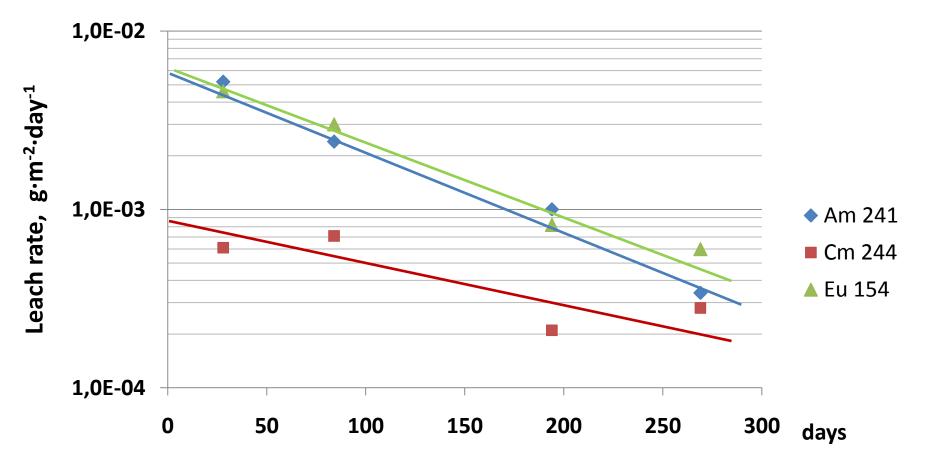
by "Sverdniichimmash", Ekaterinburg, Russia

KRI hot cell facility

- More than 40 years of safe operation
- Experience in processing about 150 kg of spent fuel of different types
- Performance 12000 Ci/year
- Unique equipment

The chain of 13 hot cells connected to the horizontal conveyor and 6 heavy boxes

Pellet of Synroc-like titanate ceramic doped with real HLW (after sorption of liquid wastes by LHT-9) *obtained at KRI hot-cell facility in 2016*



Nuclide	Activity, Bq/g
²⁴³ Am	1.5×10^{6}
²⁴¹ Am	9.3 × 10 ⁷
²⁴⁴ Cm	2.7 × 10 ⁸
¹⁵⁵ Eu	$1,5 \times 10^{6}$
¹⁵⁴ Eu	8,5 × 10 ⁷
¹⁵² Eu	1,2 × 10 ⁵
¹⁴⁴ Ce	5,1 × 10 ⁵
¹³⁷ Cs	2,4 × 10 ⁵
⁹⁰ Sr	1,3 × 10 ⁸

sintering in air at 1200°C for 2 hours

Leach rates* of ¹⁵⁴Eu, ²⁴¹Am, ²⁴⁴Cm (for 10 month, dist. water, 90°C)

*calculated for geometrical surface area

Conclusions

- LHT-9 is very efficient non-selective sorbent which is very prospective for nuclear waste management
- Spent LHT-9 (after sorption of liquid RW) can be directly converted into Synroc-like titanate ceramic by cold pressing followed with sintering in air at 1100-1200°C
- The use of LHT-9 can simplify essentially existing route of Synroc synthesis

Acknowledgement

This work was supported in part by V.G. Khlopin Radium Institute and Socium Ltd.

Presentation of this data was supported by Socium Ltd.

Personal thanks to Mr. Yuriy Demidov

Contact details

Socium Ltd.

www.spbs.group Dr. Valeriy Mararitsa <u>vf-marar@mail.ru</u>

V.G. Khlopin Radium Institute

Ms. Bella Zubekhina <u>radium@fastmail.com</u> Dr. Boris Burakov <u>burakov@peterlink.ru</u>

Saint-Petersburg State University

Prof. Sergey Britvin <u>sbritvin@gmail.com</u>