MRS2017 - Scientific Basis for Nuclear Waste Management Symposium 2017

Contribution ID : 93

Type : Oral Presentation

Radioactive Iodine-129 Capture in Mixed Cation Sodalites: ab initio modelling

Wednesday, 1 November 2017 16:00 (15)

So dalites have been investigated experimentally for the capture and long-term containment of iodine-129, a significant and hazardous waste product of the nuclear fuel cycle. So dalites are zeolite-type structures commonly occurring in nature in alkaline igneous rocks and having the prototype formula Na₈(AlSiO₄)₆Cl₂. The crystal structure is based around β -cages consisting of corner-sharing SiO₄ and AlO₄ tetrahedra. In the centre of the β -cage is an anion X. Iodine captured by so dalites sits in the centre of the β -cages as iodide anions. Silver iodide (AgI) plays an important role in the capture and subsequent processing of iodine-129 in the nuclear fuel cycle. Using *ab initio* density functional theory (DFT) modelling, we investigate the energetics and feasibility of iodine capture and containment in mixed cation so dalites Na_{8-x}Ag_x(AlSiO₄)₆I₂, and compare the results with experimental observations.

Summary

Primary author(s): Dr KUO, EUGENIA (Australian Nuclear Science and Technology Organisation)Co-author(s): Dr GREGG, Daniel (ANSTO); Dr VANCE, Eric R (ANSTO); Dr LUMPKIN, Gregory (ANSTO)

Presenter(s) : Dr KUO, EUGENIA (Australian Nuclear Science and Technology Organisation) **Session Classification :** Ceramic and Glass-Ceramic Wasteforms

Track Classification: National and international collaborative waste management programs