Volume reduction of spent uranium catalyst used for production of acrylonitrile

Kwang-Wook Kim*, Maeng-Kyo Oh, Jimin Kim, Min-Jeong Kim, Richard. I. Foster, Keun-Young Lee

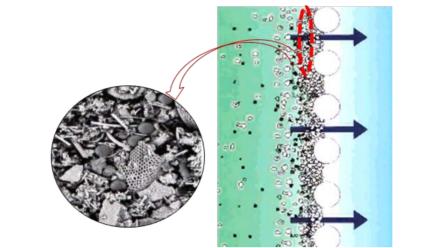
Korea Atomic Energy Research Institute 989-111 Daedeok-daero, Yuseong, Daejeon, 34057, Republic of Korea, *; nkwkim@kaeri.re.kr

Background

Generation of spent U-catalyst (SUC) used for production of acrylonitrile in Korea

- \geq Approximately 7,100 drums of SUC have been stored on the generation site, which are supposed to be disposed to a low and intermediate level radioactive waste disposal site, starting in 2019.
- Disposal cost is very high (~ 12,500 US\$/drum)
- > Current state of the U-waste does not meet acceptance requirement of the disposal site because it contains powders and mixed with burnable materials (*e.g.* tar)
- > Direct disposal of the wastes weakens original availability of the site for rad waste from NPP

Volume reduction of SUC to be disposed and treatment for acceptance requirement for the site are essential

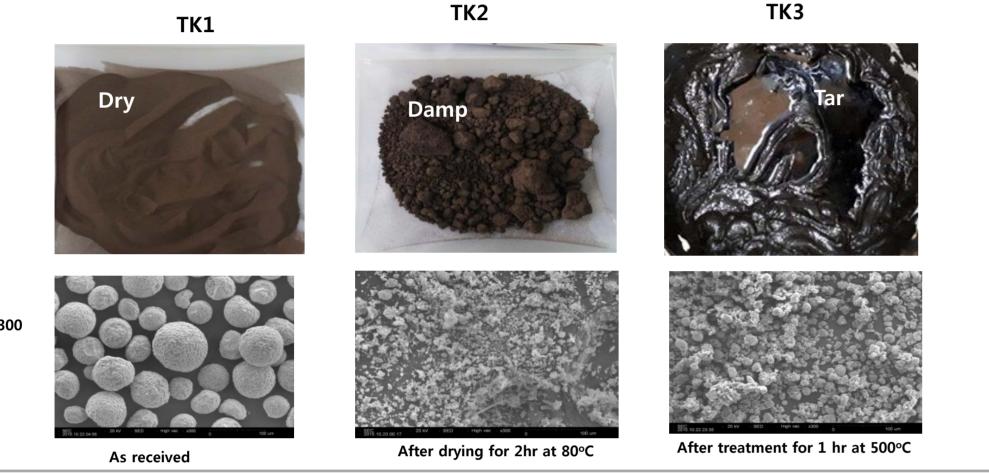

Results of evaluation of process

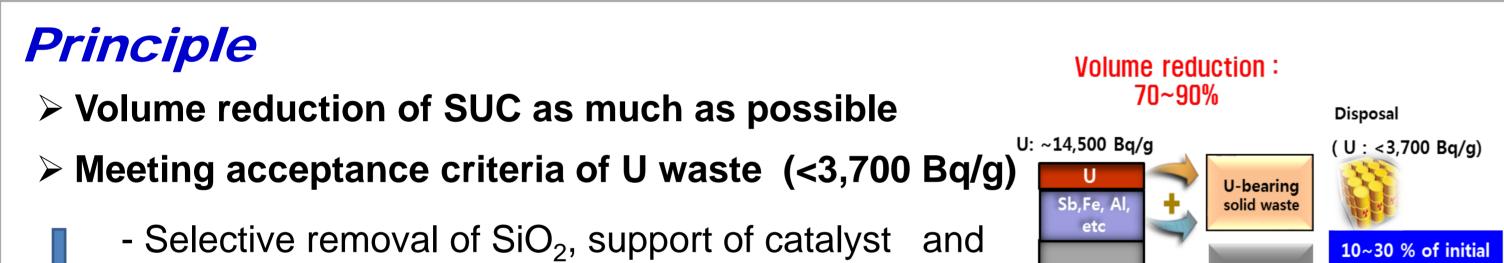
Selective dissolution of SiO₂ of SUC in alkaline solution

- SiO₂+2NaOH = Na₂SiO₃(Water glass) + H₂O (Si :30,000ppm)
- U co-dissolved : ~200 ppm $(UO_2(OH)_x^{y-})$
- > Volume reduction yield by dissolution

	Lab	Bench	Pilot
	scale	scale	scale
Volume Reduction (%)	69.7	75.7	76

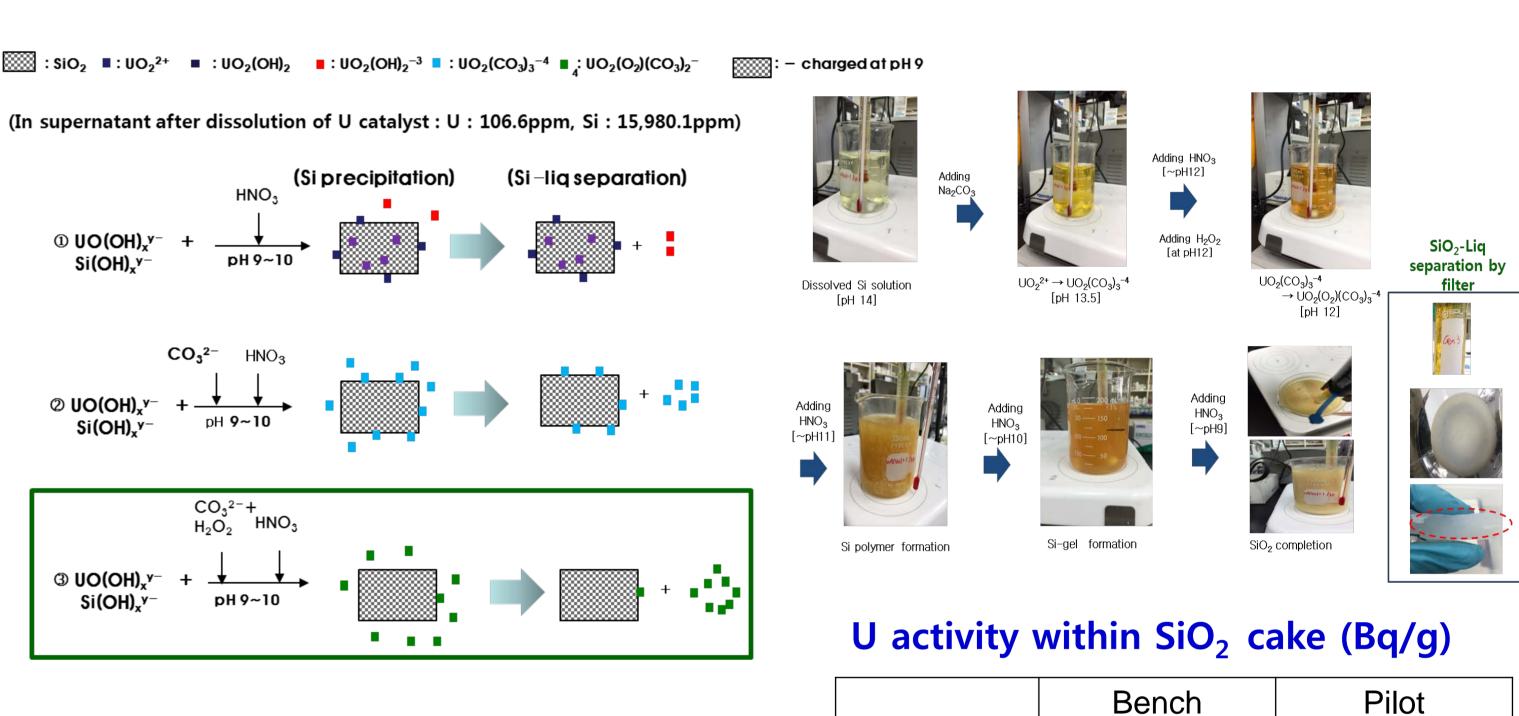
- > Separation of undissolved material
 - Using filter press using filter aid (Diatomite)





Composition and status of spend U-catalyst

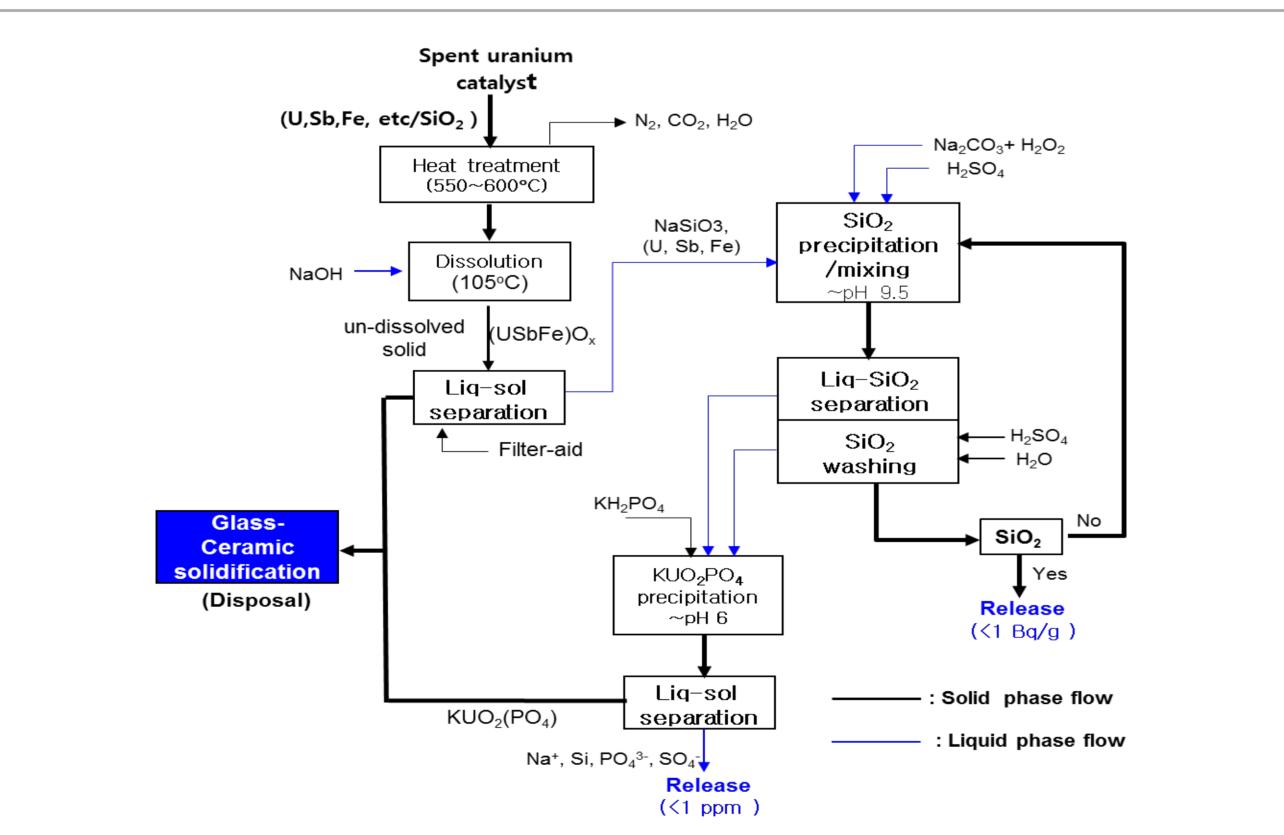
- \succ U,Sb,Fe,Al,V,Mo-mixed oxide/SiO₂
 - SiO₂ : 50~60wt %, U (U-235 : ~0.2%) : 4~9 wt%, Sb : 15~25wt %, Fe : ~5 wt%,
- Activity : 590 ~ 1,400 Bq/g (Activity of U component : ~14,500 Bq/g) (Maximum activity of α -emitting waste for the site in Korea : < 3,700 Bq/g)
- > 3 types of SUC


Concept of volume reduction of SUC

Solid-liquid mechanism by filter aid

SiO₂ recovery and its purification

- Na₂SiO₃ + 2H⁺ = SiO₂ (for clearance) + 2Na⁺ + OH⁻ (pH 9~10)
- To prevent entrainment of U into SiO_2 precipitation, dissolved U specie was changed to $UO_2(O_2)(CO_3)_2^{4-}$ species with high solubility.
- SiO₂ cake formed within filter press was washed by passing waster and acid through it.



- its release to environment as clearance (<1 Bq/g)
 - Disposal of all other components together including U as a sable waste form

Criteria for process

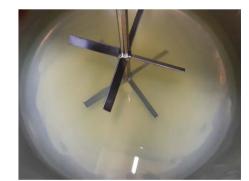
- Simple operation
- Minimal 2nd waster generation
- Low cost
- High reliability

Process devised for volume reduction of SUC

① UO(OH)_x^{y-} Si(OH)_x^{y-}

^③ UO(OH)_х^{у−}

Si(OH),


Pilot scale

	scale	scale
Washing	3.6	0.355
1st purification	0.53	0.126
2nd Purification	0.44	<0.001

(which is acceptable to release limit)

Removal of U in Effluent by meta-Ankoleite formation

- $KUO_2PO_4(H_2O)_x = K^+ + UO_2^{2+} + PO_4^{3-} + xH_2O$	$\log K_{sp} = -25.5$
---	-----------------------

Optimized conditions for uranium removal

pH	Ion	Dosage	Stir speed	Time	Final [U]
6.0 - 6.5	K^+	2 mM	100 rpm	30 min	20 ppb

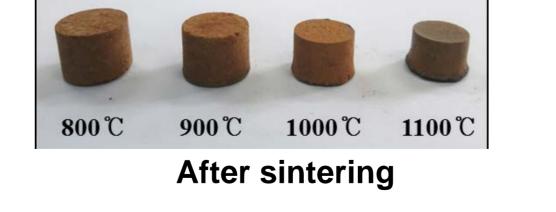
(which is below the release limit)

Glass-ceramic solidification of solid waste using B₂O₃

- Sintering mixture of final solid waste and B₂O₃ at 1100°C

300°C	900℃	1000℃	1100 ℃
	Greer	body	

SiO ₂ /B ₂ O ₃	Volume reduction (%)	Compressive strength (MPa)	Leachability (g/m²∙day)
70:0	3.55	1.548	1.418 x 10 ⁻³
70:10	12.45	12.38	1.362 x 10 ⁻³



(Bench scale test)

(Pilot scale test)

Evaluation of the process in bench and pilot scale based on lab scale test

70 : 15	37.49	65.28	1.063 x 10 ⁻³	
70 : 20 (The sinte	51.74 ered materia	67.85 al has a very st	6.426 x 10 ⁻⁴	
giving additional volume reduction)				

Conclusions

The process suggested was confirmed to reduce ~ 80% of uranium catalyst waste volume with meeting release and clearance requirements of less than 1 ppm for solution and 1 Bq/g for solid.

References

1. K. W. Kim et al., "The development of a process for the volume reduction of uranium catalyst waste used for production of acrylonitrile", In Press, (2017). 2. Kane M. Kanematsu et al. "Influence of Phosphate and Silica on U(VI) Precipitation from Acidic and Neutralized Wastewaters", Environ. Sci. Technol., 48, **6097-6106**, (2014).