

Structural incorporation of Cm³⁺ and Pu³⁺ in phosphate ceramics with monazite structure

Stefan Neumeier^{1*}, Y. Arinicheva¹, N. Huittinen², K. Popa³, A.C. Scheinost^{2,4}, A. Rossberg^{2,4}, A. Cambriani³, P. Raison³, A. Wilden¹, J. Somers³, D. Bosbach¹

¹Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ²Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany ³European Commission, Joint Research Centre, 76125 Karlsruhe, Germany ⁴The Rossendorf Beamline, The European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France

MRS2017 Scientific Basis for Nuclear Waste Management Symposium 2017 29 Oct. - 03 Nov. 2017, Sydney, Australia

Motivation

At the present time borosilicate (or phosphate) glasses is the generally accepted first generation waste form

But with the increasing demand for the immobilization of large quantities of HLW, there is a strong incentive to reconsider ceramic (single or poly-phase) as waste forms

- \Rightarrow higher chemical durability
- \Rightarrow aqueous durability
- \Rightarrow high waste loading
- \Rightarrow radiation tolerance
- \Rightarrow volume swelling
- \Rightarrow existence of natural analogues

Introduction to REE-Phosphates

Y.X. Ni et al. (1995) Am. Mineral. 80 (1995) 21-26; R.D. Shannon (1976) Acta Cryst. A32 (1976) 751–767; David&Vokhmin New J. Chem. 27 (2003) 1627–1632.

N. Dacheux et al. Am. Mineral. 98 (2013) 833; S. Neumeier Radchim. Acta (2017) https://doi.org/10.1515/ract-2017-2819

Methodology to study ceramic waste forms

Main questions:

- How An can be incorporated into the crystal structure of ceramic waste form?
- Where do the An sit after incorporation and how does the chemical environment look like?
- > How do the An behave in the long-term under repository relevant conditions?

Precipitation of LnPO₄

Samples synthesized:

Pure *Ln*PO₄ endmembers

Mixed phases of $La_{1-x}Ln_xPO_4$ (*Ln* = Eu, Gd; monazite solid solution)

Y. Arinicheva et al. Prog. Nucl. Energy 72 (2014) 144-148. S. Neumeier et al. Prog. Nucl. Energy 92 (2016) 298-305.

Vegard's law for (La,Eu)PO₄ solid solutions

Lattice parameter in dependence of Eu-content

Y. Arinicheva et al. Prog. Nucl. Energy 72 (2014) 144-148. S. Neumeier et al. Prog. Nucl. Energy 92 (2016) 298-305.

Thermochemistry of $La_{1-x}Ln_xPO_4$ solid solutions (Ln = Eu, Gd)

- Single phase $La_{1-x}(Eu,Gd)_xPO_4$ solid solutions are thermodynamically stable
- Excess properties due to lattice strain
- More details during poster session, Philip Kegler
- S. Neumeier J. Chem. Thermodyn. 105 (2017) 396-403.

Questions to be solved using TRLFS

- Non-destructive, extremely sensitive method
- Solving reaction mechanisms at solid/water interfaces which are essentially needed for any reliable long-term safety prognosis of nuclear waste repositories

By courtesy of Dr. M. Schmidt, HZDR

TRLFS - Emission spectra

> Symmetry splitting pattern of e.g. ${}^{7}F_{1}$ and ${}^{7}F_{2}$ bands

Table from: Bünzli and Choppin (Eds.) (1989) Elsevier Science B.V., Amsterdam.

 $C_1, S_2, C_s, C_2, C_{2h}, C_{2v}, D_2, D_{2h}$

 $C_3, S_6, C_{3v}, D_3, D_{3d}$

Trigonal

Low

TRLFS - Lifetimes

> Hydration state, number of species (mono vs. multiexponential decay)

Eu³⁺ incorporation in *Ln*PO₄ monazites

Site-selective TRLFS studies of Eu³⁺ incorporation in LnPO₄

- \succ Eu³⁺ substitution into the REPO₄ matrix
- excitation peak redshifted in comparison to LaPO₄
- stronger ligand field effect in GdPO₄

Eu³⁺ and Cm³⁺ incorporation in LnPO₄ monazites

- Cm³⁺ substitution into the REPO₄ solid solution matrix confirm homogeneity
- REPO₄ solid solutions result in a local disordering of the crystal structure due to bond length distribution (contribution to lattice strain)

Solid state formation reaction of La_{1-x}Pu_xPO₄

 $(1-x)La_2O_3 + 2xPu^{IV}O_2 + 2(NH_4)_2HPO_4 \rightarrow 2La_{1-x}Pu_x^{III}PO_4 + 4NH_3^{\uparrow} + 3H_2O + \frac{1}{2}xO_2^{\uparrow}$ (10% molar excess)

 $Pu^{IV}O_2 + 2 (NH_4)_2 HPO_4 \rightarrow Pu^{IV}P_2O_7 + 4 NH_3 + 3 H_2O$

 $4 \ Pu^{IV}P_2O_7 \rightarrow 4 \ Pu^{III}PO_4 + P_4O_{10} + O_2$

$\begin{array}{c} \textbf{Characterization of } La_{(1-x)} Pu_x PO_4 \\ \textbf{XRD} \end{array}$

- Formation of single phase $La_{1-x}Pu_xPO_4$ solid solution up to x = 0.15
- PuO₂ residues point to incomplete reaction, decomposition (Pu₂O₃) can be excluded

Characterization of La_(1-x)Pu_xPO₄ XRD, XANES

- Formation of single phase $La_{1-x}Pu_{x}PO_{4}$ solid solution up to x=0.15
- Pu is incorporated in oxidation state of +III

Y. Arinicheva et al. *J. Nucl. Mater.* 493 (2017) 404-411.
K. Popa et al. *J. Solid State Chem.* 230 (2015) 169-174.

Conclusion

 Homogeneous and thermodynamically stable regular monazite-type solid solutions are accessible by wet chemistry methods (precipitation)

- Trivalent actinides such as Cm³⁺ are homogeneously incorporated on monazite lattice sites after sintering
- Pu is incorporated in oxidation state +III
- Monazite structure stabilizes the incorporation of Pu in oxidation state +III
 - Points to the stability of monazite-type waste form
- Single phase monazite-type La_{1-x}Pu_xPO₄ x~0.15 solid solutions are accessible by conventional solid state method starting from PuO₂
 - Reasonable loading for a waste form
 - > Dissolution of hardly soluble PuO_2 can be prevented
 - > However, loading might be increased by optimization of sythesis method (precipitation)
- La increases the thermal stability of PuPO₄ (supresses decomposition)

Monazite-type lanthanide phosphates are suitable host phases to incorporate trivalent actinides

[➢] Host matrix can be designed consisting of a main matrix element, e.g. La³⁺ and a neutrom poison, e.g. Gd³⁺

Acknowledgements

SPONSORED BY THE

Federal Ministry of Education and Research 02NUK021

UCDAVIS PETER A. ROCK Thermochemistry Laboratory

Dr. Stefan Neumeier International Safeguards Forschungszentrum Jülich GmbH Institute for Energy- and Climate Research IEK-6: Nuclear Waste Management and Reactor Safety D-52425 Jülich Germany E-Mail: s.neumeier@fz-juelich.de