

Ion irradiation used as surrogate for neutron irradiation to understand nuclear graphite evolution during reactor operation: consequences for the long lived radionuclide's behavior

N. Galy^{1*}, <u>N. Toulhoat^{1,2}</u>, N. Moncoffre¹, Y. Pipon¹, N. Bérerd¹, M.R. Ammar³, P. Simon³, D. Deldicque⁴, P. Sainsot⁵

¹ Université de Lyon, CNRS/IN2P3, IPNL, France
² CEA Centre de Saclay, France
³CNRS, CEMHTI, Orléans, France
⁶ ENS, Paris, France
⁵ Université de Lyon, INSA-Lyon, France
^{*} Now at CEA

Worldwide ~ 250,000 tons irradiated graphite waste (most moderators or reflectors of CO₂ cooled reactors) LL-LLW waste: main management solution : disposal (with or without prior purification) Long lived non sorbing dose determining radionuclides likely to be released out of the disposal ¹⁴C : $T_{1/2} \sim 5730$ years Release under organic (anionic) form Release due to the mobility of Cl⁻ in clay ${}^{36}\text{Cl}$: T_{1/2} ~ 300 000 years host rocks Gain information on inventory, speciation and location in nuclear

graphite after reactor shutdown

What we already know on ¹⁴C and ³⁶Cl in nuclear graphite

¹⁴C : two different origins inducing contrasted locations

³⁶Cl : mainly produced through the activation of ³⁵Cl (nuclear graphite impurity) ³⁵Cl(n, γ)³⁶Cl

³⁶Cl release related to the structure of graphite ↓ ³⁶Cl located at crystallite edges released from T = 200°C ³⁶Cl located inside crystallites released at T > 1200°C

G. Silbermann et al. Nuclear Instruments and Methods in Physics Research Section B 332 (2014) 106 -110 N. Moncoffre et al. Journal of Nuclear Materials 472 (2016) 252-258 C.E. Vaudey et al. Journal of Nuclear Materials 395 (2009) 62-68 C.E. Vaudey et al. Journal of Nuclear Materials 418 (2011) 16–21

A. Blondel et al. Carbon 73 (2014) 413-420

N. Toulhoat et al. Journal of Nuclear Materials 464 (2015) 405-410

Impact of neutron irradiation + temperature on the ¹⁴C and

³⁶Cl behavior?

✓ How does irradiation modify the graphite structure

✓ How does the structure modification influence the radionuclides release?

³⁷Cl or ¹³C implantation to simulate ³⁶Cl or ¹⁴C

Two different structural states

Implantation alows simulating two different structural states :

G mode : planar vibrations of C atoms

D mode : hetero-atoms, vacancies, grain boundaries and other defects

 $\int I_{D1}/I_{G}$ and FWHM_G parameters : monitor the graphite structure disorder

MRS 2017 Sydney 29 Oct - 03 Nov

Ion irradiation to simulate neutrons

Neutrons generate atom Recoil carbon atoms transfer displacements producing mainly some energy through excitations and ionisations Ballistic damage (1 - 3 dpa) Stopping power $(S_{tot}) =$ Nuclear stopping power (S_n) + Electronic stopping power (S_e) Ions used to simulate neutron irradiation effects

		Energy (MeV)	Se (keV/µm)	dpa	
	Carbon	0.4 - 0.6	585 - <mark>73</mark> 0	1	Ballistic regime is favored
	Argon	0.8	980	4	
	Helium	15.7	75	0.0001	
	Sulfur	100	3700	0.002	Electronic regime is favored
	lodine	200	16700	0.04	

Structure evolution

0.0

800

1000

1200

1400

Raman shift (cm⁻¹)

1600

1800

2000

Ballistic irradiation (dpa >> 1) : strong disordering compensated by temperature annealing effects

reordering

30

V

Electronic regime or ballistic at low dpa level : almost no impact on disordering

As implanted

Irr C^{*} - 200 °C IrrC^{*} - 500 °C

1800

Ar* - 200 °C

- 1000 °C

2000

Structure evolution

Highly disordered structure through implantation

HRTEM and squeletonized images

> Temperature alone or electronic regime : no impact

Increase of the size of the coherent domains

Ballistic irradiation + temperature : three dimensional reordering of the structure

Reordering process

Highly disordered structure through implantation

Very low reordering activation energy

Athermal radiation enhanced annealing process (break-up of clusters and vacancy-interstitial annihilation)

³⁷Cl release under irradiation

MRS 2017 Sydney 29 Oct - 03 Nov

¹³C release under irradiation

Almost no ¹³C release whatever the irradiation conditions

¹³C might be stabilized into new

formed carbon clusters?

Inferred behavior for 14C and 36Cl in irradiated graphite

graphite in the reactor will lead to significant structural heteroneneities

High temperature annealing $(T > 1300^{\circ}C)$ prior to disposal should in any case be beneficial

This presentation is mainly based on results issued from the PhD of N. Galy (2016)

The authors are very grateful to

Financial support

The European (Euratom) Programme FP7/2007-2013 under the grant agreement n° 604779 (CAST 14)

Technical support

IPNL accelerator staff (VDG 4MV and IMIO 400) ICUBE laboratory, Strasbourg University TANDEM accelerator staff, Orsay CEMHTI accelerator staff, Orléans

Thank you for your attention !