

Microparticle Production as Reference Materials for Particle Analysis Methods in Safeguards

<u>Stefan Neumeier</u>^{1*}, R. Middendorp¹, A. Knott^{1,2}, M. Klinkenberg¹, F. Pointurier³, D.F. Sanchez⁴, V.-A. Samson⁴, D. Grolimund⁴, I. Niemeyer¹, D. Bosbach¹

¹Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ²European Commission, Joint Research Centre Karlsruhe (JRC), 76344 Karlsruhe, Germany ³CEA, DAM, DIF, F-91297 Arpajon, France ⁴Paul Scherrer Institute, 5232 Villigen, Switzerland **E-mail: s.neumeier@fz-juelich.de*

MRS2017 Scientific Basis for Nuclear Waste Management Symposium 2017 29 Oct. - 03 Nov. 2017, Sydney, Australia

Introduction

Nuclear Safeguards Particle Analysis

- Treaty on non-proliferation of nuclear weapons signed by 191 countries
- Member-states declare not to develop nuclear weapons
- But, independent verification
 → IAEA
- Inspectors visit nuclear facilities
 - Bulk samples to verify declaration
 - Swipe samples to detect undeclared activities
- Swipe samples sent to dedicated laboratories ('NWAL')
- Analysis of isotopics of single microparticles (e.g. LG-SIMS)
- Analytical measurements require quality control measures to ensure correct results
- > No microparticle reference materials available

2

Photo: D. Calma (IAEA)

Introduction

Since 07/2012 joint effort between Forschungszentrum Jülich and IAEA-SGAS

Goal:

 Establishment of a production process for particles suitable as reference material and delivery of particles

Additional Goal:

- Make production capacity available at FZ Jülich
- Final characterization and certification by other laboratories (IAEA-SGAS, JRC-IRMM,...)

31 October 2017

Particle Reference Standard Production

Two step process:

1. Aerosol-based particle production and collection

2. Particle distribution on substrates using suspensions

Current set-up particle production Vibrating Orifice Aerosol Generator (VOAG)

Current set-up particle production Vibrating Orifice Aerosol Generator (VOAG)

Process control

- Temperature of aerosol heater
- Air flow
- Liquid flow
 - \rightarrow Determination of el. content per particle
- Online monitoring with optical particle counter

Particle characterization

500 nm

Stability	in solutions
Slaville	

3.2 3.0

82.4 2.4 - 2.2

2.0

Particle Production

Precursor Solution

Particle Production SEM/FIB

Uranyl chloride $T = 500 \ ^{\circ}C$

Uranyl acetate $T = 400 \ ^{\circ}C$

Particle Production Particle Size Distribution: SEM

Scanning Electron Microscope (SEM) for particle size distribution

Particle Production

TALISMAN * * *

Characterization

X-ray diffraction, X-ray near-edge absorption spectroscopy and raman spectroscopy to determine structure

UN: Uranyl nitrate | UA: Uranyl acetate | UC: Uranyl chloride R. Middendorp et al. *Anal. Chem.* 89 (**2017**) 4721-4728. DOI: 10.1021/acs.analchem.7b00631

Status - Particle production 2015

✓ First in-depth characterization of particle formation process and final products

Particles suitable for QC and interlaboratory comparisons

Particle suspensions

Present system

Particles are collected using vacuum impactors

- + Can be used without further handling
- Inhomogeneous deposition
- Requires solid substrate
- No mixing of particles possible
- Limited to ca. 50 samples/day

Spatial particle distribution obtained with single-stage inertial impactor

Problems can be overcome with intermediate processing step

Collection using
inertial impactorParticle transfer
into suspension
ultrasonificationOptional:
Mixing of
suspensions

Distribution on substrates controlled drying

But stability of the particles in suspension has to be investigated

Particle suspensions

Medium selection

Various solvents were tested as medium:

- Water → dissolution
- Dimethyl formamide \rightarrow particle break-up
- n-Decane and n-hexane → no detachment
- 2-Propanol \rightarrow agglomeration
- Ethanol → most suitable

Ethanol used for further studies

Particles suspensions Dissolution in ethanol

Particles were stored in ethanol for 455 days After 228 days: 0.132(22) % of particles were dissolved (Q-ICP-MS)

No significant dissolution measured after 228 days No significant dissolution after 455 days

Temperature (\rightarrow evaporation rate) critical to control deposition

Drying on heating plate (50°C):

Prepared suspensions are dried on substrates

Horizontal position $x \ / \ mm$ Horizontal position $x \ / \ mm$

Homogeneous particle deposition achieved

Particles suspensions Distribution

Particle suspensions Application: Particle mixtures

JÜLICH FORSCHUNGSZENTRUM

Suspensions can also be mixed to produce particle mixtures

- Uranium and cerium particle suspensions mixed
- Substrates measured by SEM/EDX

Production of particle mixtures feasible

Particle suspensions Application: Substrates

JÜLICH FORSCHUNGSZENTRUM

Suspensions can also be dried on other substrates

• U/Ce mixture dried on piece of cotton swipe

Production of "swipe samples" feasible

Summary

Aerosol-based particle production method provides orthorhombic U_3O_8 microparticles:

- \checkmark with average diameter of 0.9 1.4 µm and narrow size distribution
- with high density and some inner porosity
- with high chemical stability in ethanol
 - No visual signs of dissolution [455 days]
 - No significant dissolution [228 days]
 - No between-particle isotope exchange [202 days]

Particle suspensions in ethanol

- Homogeneous particle distribution on substrates
- Particle mixtures prepared
- Particles deposited onto cotton swipes
- Number of samples/day: 100 150