

Novel approaches to densify powder metallurgical materials through hot isostatic pressing

Maheswaran Vattur Sundaram, Eduard Hryha, Lars Nyborg

Department of Industrial and Materials Science Chalmers University of Technology Gothenburg, Sweden <u>vattur@chalmers.se</u>

Contents

- Background
- Process Methods
- Results
- Summary

Background: Why PM?

- Complex shapes
- High volume production
- Less energy consumption
- Less material waste
- Tailored properties
- Sustainable manufacturing process
- Need for high performance applications

Source: European Powder Metallurgy Association

Powder Metallurgy Process

1. Powder Production

2.Admixing

3.Compaction

4. Delubrication and Sintering

~100°C

Sprocket

Injector Yoke

Challenge, Approaches and Benefits

PM steel with density = 7.2 g/cm³

~ 90% theoretical density

"Porosity"

Limits the applications

Source: Höganäs Handbook for Sintered Components-3.Design and Mechanical Properties. Höganäs AB, 2004

Hot Isostatic Pressing

- Post processing method
- Simultaneous application of Pressure and Temperature (max 2000 bar and 2000 °C)
- Capsule or a container is needed for powder consolidation
- Cost competitive (< 5 SEK per Kg)</p>
- Rapid cooling

Objectives

- To achieve full density
- Surface pore closure for capsule free HIP
- Critical evaluation of the approaches

- 1 Liquid phase sintering (LPS)
- 2 Double pressing and Double sintering (DPDS)
- 3 Cold Isostatic Pressing (CIP)
- 4 High velocity compaction (HVC)
- 5 Additive manufacturing (AM)

Vattur Sundaram M. Licentiate Thesis 2017

High Density \rightarrow Full density

1.Liquid Phase Sintering

Sintering time, min

Materials and Process

Ni-Mn-B master alloy (MA)-CEITALLOY HD

Elements	Ni	Mn	В	Ν	С	0	S
Wt. %	46.00	46.10	7.90	0.001	0.075	0.025	0.004

Fe and Mo prealloyed powders from Höganäs AB

Motorial	Elen	nents	in W	Designation	
Material	Мо	С	MA	Fe	Designation
Fe	-	-	2.5	Bal	Fe+2.5MA
(ASC100.29)	-	0.3	2.5	Bal	Fe+2.5MA+C
Fe-0.45Mo (X-Astaloy 0.45Mo)	0.45	-	2.5	Bal	Fe-Mo+2.5MA
	0.45	0.3	2.5	Bal	Fe-Mo+2.5MA+C
	0.45	-	1.5	Bal	Fe-Mo+1.5MA
	0.45	0.3	1.5	Bal	Fe-Mo+1.5MA+C

- Effect of carbon
- Effect of molybdenum
- Effect of master alloy amount

Results: DSC

Ni-Mn-B (< 45 µm) Master alloy

Fe+MA 0.4 Fe+2.5MA Exo Fe+2.5MA+C 0.3 Fe-Mo+2.5MA e-Mo+2.5MA+C Fe-Mo+1.5MA 0.2 ---- Fe-Mo+1.5MA+0 m///mg 0. 0.0 -0.1 -0.2 800 900 700 1000 1100 1200 Temperature (°C)

LP1-Master alloy melting

LP2-Eutectic formation 1134 °C to 1154 °C

Vattur Sundaram M et al. Metall Mater Trans A 2017.

Dilatometry

Microstructure

1000 °C-1 min

1100 °C-1 min

1240 °C-30 min

Two stages of Liquid formation occurs during Heating stage

LP-1 → Master alloy melting LP-2 → Eutectic formation

Vattur Sundaram M et al. Metall Mater Trans A 2017.

Surface Densification

Fe-Mo+2.5MA+C

Densification after HIP

Surface Densification

After Impact testing

HIP at Quintus : 1000 bar, 1150 °C for 2 hours

Summary

Liquid phase sintering of boron-containing master alloy powder enables the densification to > 95 % of the theoretical density and also surface pore closure.

This enables full densification after HIP.

Mo and C addition improves the densification and final properties.

Microstructural embrittlement occurs with 2.5 wt. % master alloy and it is more severe with carbon addition.

For improved properties, lower boron content is needed, around 0.12 wt. % (1.5 wt. % master alloy addition).

2. Double pressing - Double sintering (DPDS)

- Pressure based densification
- Powder consolidation is from first pressing
- De-lubrication and stress relieving from pre-sintering
- Increase in density to enable pore closure after second sintering

⇒

2P

800 MPa

2S

1300 °C

in

 $N_2/10H_2$

HIP for full densification

1S

800 °C

1P

800 MPa

Materials and Process

Astaloy Mo (1.5 wt.% Mo Prealloyed+0.2 wt.% graphite) from Höganäs AB

Series	Powder	Lubricant	Sintering temperature
			and time
A	Standard	Densmix	1300°C, 1h
В	Standard	LubeE	1300°C, 1h
С	Fine (< 63µm)	LubeE	1300°C, 1h
D	Standard	Lube E	1250°C, 1h

Samples

Parallel to axis

Perpendicular to axis

Cylinder

Diameter \rightarrow 25 mm Height → 20 mm

٠

- Diameter→ 31.75 mm ٠
- Axial width \rightarrow 10 mm ٠
- Module → 1.58 mm ٠

- Effect of lubricants
- Effect of powder size fraction
- Effect of sintering temperature

Gear

Cylindrical samples Gear samples 7.9 7.9 7.8 7.8 7.7 7.7 7.3 7.3 --∎-- Sample B --∎-- Sample B ⊖ Sample C ─── Sample C 7.2 7.2 - Sample D -A- Sample D 7.1 7.1 **1P 1S** 2P **2S** HIP **1**S 1P 2P **2S** HIP Process Process

Sample

В

С

D

Powder

Standard

Fine (< 63µm)

Standard

Sintering temperature and time

1300°C, 1h

1300°C, 1h

1250°C, 1h

Summary

High density to close the surface pores after 1300 °C sintering and allows subsequent HIP without capsule.

Near full density for both processed gears and cylinders.

Potential route for making fully dense PM parts.

Neutral zone problems persists, that can be optimised through the geometrical optimisation.

4. High Velocity Compaction

- Densification from intense shock waves
- Uniform density, lower spring back and ejection forces
 - Scanpac Process

Gas atomised powders

Material and process

100Cr6 Gas atomised powder from Carpenter Powder Products AB

Powder agglomeration through Scanpac process developed by Bofors Bruk AB

In wt.%	С	Si	Mn	Cr	Со	Fe
100Cr6	0.98	0.5	0.4	1.5	0.2	Bal

Density

Magnusson H, Frisk K, Vattur Sundaram M et al. World PM 2016.

Summary

HVC route using agglomerated powders up to density levels of ~97% of the theoretical density with the surface pore closure.

Near full density ~99.4% is then reached after HIP without any capsule.

Further control of sintering atmosphere is needed for efficient reduction of oxides.

5.Additive Manufacturing

- Powder filled in shell structures for HIP
- Complex-shape full density components
- To improve productivity
- Ti-6AI-4V gas atomised powders (45-105 μm)

-

Arcam A2 EBM

Sweden University

Shell sample filled with powders With varying wall thickness

Shell structures after HIP

Diamet

Diameter and height = 24 mm

Frisk K, et.al World PM 2016

Cross-section of shell samples

Diameter and height = 24 mm

Summary

- The concept works for HIP
- Critical wall thickness ~1 mm for pore free shell structure/gas tight
- HIP results in homogenous microstructure, eliminates defects and pores
- Defect free interface between the densified powders and printed shells

Overall Summary

Full/High density is feasible through all the proposed processes routes.

Large components, for High performance applications

Acknowledgements

Magnus Ahlfors, Quintus Technologies AB

