Fabrication of diamond/SiC composites using HIP from the mixtures of diamond and Si powders

Ken Hirota ${ }^{1, a^{*}}$, Motoyasu Aoki ${ }^{1, b}$, Masaki Kato ${ }^{1, \mathrm{c}}$, Minoru Ueda ${ }^{2, d}$ and Yoichi Nakamori ${ }^{2, e}$
${ }^{1}$ Department of Molecular Chemistry \& Biochemistry, Faculty of Science \& Engineering, Doshisha University, Kyoto 610-0321, Japan.
${ }^{2}$ Metal Technology Co., Ltd, 1-32-2 Honcho, Nakano-ku, Tokyo 164-8721, Japan
${ }^{\text {a}}$ khirota@mail.doshisha.ac.jp, ${ }^{\text {b }}$ ctwb0701@mail4.doshisha.ac.jp,

Keywords: diamond, $\mathrm{SiC}, \mathrm{B}_{4} \mathrm{C}$, a liquid-phase reaction sintering, Vickers hardness

Abstract

Diamond/SiC=75/25~50/50vol\% composites have been fabricated utilizing a liquid-phase reaction sintering during hot isostatic pressing (HIP) at $1450^{\circ} \mathrm{C}$ under 196 MPa for 2 h from the mixtures of diamond and Si powders. They were mixed for 30 min in ethanol. After drying, they were compacted uniaxially and isostatically (245 MPa). They were pre-heated at $950^{\circ} \mathrm{C}$ for 2 h (Process I) or solidified using pulsed electric-current pressure sintering (PECPS) at 1350 or $1450^{\circ} \mathrm{C}$ for 10 min under 50 MPa in a vacuum (Process II). Both compacts prepared via "Process I" or "II" were densified by Pyrex-glass capsule HIPing $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}\right)$. The high relative density has been achieved at the composition of diamond $/ \mathrm{SiC}=55 / 45 \mathrm{vol} \%$ using Process II. In order to increase Vickers hardness $\left(H_{\mathrm{v}}\right)$, a small amount of $\mathrm{B}_{4} \mathrm{C}$ particles have been added to diamond $/ \mathrm{SiC}=55 / 45 \mathrm{vol} \%$ composites using "Process II" at $1350^{\circ} \mathrm{C}$ and followed by HIP. The H_{v} values increased from 37.3 to 40.5 GPa at $5 \mathrm{vol} \% \mathrm{~B}_{4} \mathrm{C}$ addition.

Introduction

As for the continuously increasing need of new novel materials and properties, hard inorganic materials have been attracting a lot of attention. Among them, diamond is the hardest (Vickers hardness $H_{\mathrm{v}}: \sim 150 \mathrm{GPa}$) material with high mechanical properties as shown in Table 1. Since the invention of artificial diamond in 1955 by Bundy et al. [1], a lot of works have been done to fabricate polycrystalline diamond (PCD) under the diamond's thermodynamically stable state region [2], such as $5 \sim 6 \mathrm{GPa}$ and $1800 \sim 1900^{\circ} \mathrm{C}$ [3]. On the other hand, a few experiments have been attempted in the metastable region [4]. Shimono and Kume [5] studied the fabrication of diamond/SiC composites from diamond and Si powders using a glass-capsule HIP. They reported the bulk density of $3.2 \sim 3.3 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$, i.e., the relative density $\geq 90 \%$, average H_{v} of 23.5 GPa , and bending strength σ_{b} of $\sim 550 \mathrm{MPa}$, for the composites fabricated at $1450^{\circ} \mathrm{C}$ for 30 min at 50 MPa . Recently a new sintering method, i.e., pulsed electric-current pressure sintering, PECPS, has been developed in Japan [6]. This method has some features; it can solidify poor sinterable powders in a shorter soaking time at lower sintering temperature than those of conventional electric furnace [7, 8].

In the present study, we have applied this method to fabricate diamond $/ \mathrm{SiC}$ composites and compared with those made using the nearly same method [5]. Furthermore, to improve the H_{v} value, the third hardest $\mathrm{B}_{4} \mathrm{C}$ particles have been added to diamond $/ \mathrm{SiC}$ composites based on thermochemical stability at high temperatures among diamond $/ \mathrm{SiC}$ matrix. The present paper describes the properties of (PECPS+HIP) sintered diamond/SiC composites and also reports the H_{v} of $\mathrm{B}_{4} \mathrm{C}$ added composites.

Experimental procedure

Fabrication of diamond/SiC composites with a small addition of $B_{4} C$ particles
As shown in Fig. 1, starting powders were diamond (average particle size P_{s} of 69 and 3.5 $\mu \mathrm{m}$, Tomei Diamond, Tokyo, Japan), Si (P_{s} of $5.0 \mu \mathrm{~m}$, High Purity Chemical Labo., Saitama, Japan), and $\mathrm{B}_{4} \mathrm{C}$ (P_{s} of $0.5 \mu \mathrm{~m}$, ibid.). The Si powder was pulverized into P_{s} of $0.6 \mu \mathrm{~m}$ using a beads-mill, (Easy Nano, AIMEX, Tokyo, Japan) at 1600 rpm for 1.0 h using $2.0 \mathrm{~mm} \phi$ zirconia balls in ethanol and Ar. The diamond powders of P_{s} of 69 and $3.5 \mu \mathrm{~m}$ were mixed into a 7:3 ratio [9]. The diamond and pulverized Si powders, furthermore $\mathrm{B}_{4} \mathrm{C}$ particles were mixed homogeneously using a vibrating homogenizer in ethanol. After drying, they were mixed with a small amount of 3% acrylic binder and compacted uniaxially and isostatically $(245 \mathrm{MPa} / 1 \mathrm{~min})$. From our preliminary experimental results, they were pre-heated at $950^{\circ} \mathrm{C}$ for 2 h (Process I) or solidified using pulsed electric-current pressure sintering (PECPS) at $1350 \sim 1450^{\circ} \mathrm{C}$ for 10 min under 50 MPa in a vacuum (Process II). Both compacts prepared via "Process I" or "II" were densified by Pyrex-glass capsule HIPing ($1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}$) as shown in Fig. 1, using a liquid-phase reaction sintering [10] between diamond and Si at higher temperatures than the melting point of $\mathrm{Si}\left(1414^{\circ} \mathrm{C}\right)$ by glass-capsule $\mathrm{HIPing}\left(1450^{\circ} \mathrm{C} / 2\right.$ $\mathrm{h} / 196 \mathrm{MPa} / \mathrm{Ar})$.

Characterization of samples

Crystalline phases were identified by X-ray diffraction (XRD) analysis. Bulk densities of sintered samples were measured by Archimedes method. Microstructural observation on the fracture surfaces of sintered samples was performed with a field-emission type scanning electron microscope and their average grain sizes G_{s} were determined by an intercept method [11]. Then, H_{v} was evaluated with an applying load of 9.8 N and a duration time of 15 s with a Vickers hardness tester.

Table 1 Physical and mechanical properties of diamond, silicon carbide

Property	symb		diamond	β-SiC	$\mathrm{B}_{4} \mathrm{C}$
					hexa.
Theoretical density	D_{x}	$\mathrm{Mg}^{-3}{ }^{-3}$	3.513	3.21	2.515
Vickers hardness	H_{v}	GPa	~ 150	28	33.5
Melting temperature	T_{m}	${ }^{\circ} \mathrm{C}$	2450	2730	2450
Fracture toughness	$K_{\text {IC }}$	$\mathrm{MPa} \cdot \mathrm{m}^{1 / 2}$	2.0	4.0	3.1
Young's modulus	E	GPa	1050	430	385
Thermal expansion coefficient	α	$10^{-6} \cdot \mathrm{~K}^{-1}$	0.8~1.2	4.5	2.3
Thermal conductivity	σ_{T}	$\mathrm{W} \cdot(\mathrm{mK})^{-1}$	600-2000	270	37

Results and discussion

Fig. 1 Flow chart for the fabrication of diamond/SiC composites.

Difference between Process I and II
Fig. 2 displays the XRD patterns of diamond/SiC composites with various SiC contents from 35 to $50 \mathrm{vol} \%$ or 35 to $100 \mathrm{vol} \%$, fabricated as follows; (a)~(d), calcined ($950^{\circ} \mathrm{C} / 2 \mathrm{~h} / \mathrm{vac}$.) via "Process I", and (e) $\sim(\mathrm{h})$ sintered by PECPS ($1450^{\circ} \mathrm{C} / 10 \mathrm{~min} / 50 \mathrm{MPa} / \mathrm{vac}$.) via "Process II", then followed by HIP $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}\right)$. Big difference between "Process I" and "II" is; i) with increasing the intended content of SiC from 35 to 50 vol\%,
amount of graphite $2 \mathrm{H}-\mathrm{C}$ in the HIPed composites decreased in (a) to (d) via "I", on the contrary the amount of graphite increased in (e) and (f) via "II", and ii) the remained content of Si in the composites were still high in XRD patterns of (b)~(d) via "I', however, in "II" the amount of unreacted Si is not so high without the diamond $/ \mathrm{SiC}=30 / 70 \mathrm{vol} \%$ composition, suggesting that when a small amount of Si was added to the diamond powders, and PECPSed at $1450^{\circ} \mathrm{C}$ unreacted diamond might transform into graphite. This might be explained by that the dense microstructures of diamond/SiC after PECPS at $1450^{\circ} \mathrm{C}$ might block a direct-contact between diamond and remained liquid Si and resulted in suppression of their liquid state reaction during HIPing. Fig. 3 (i) to (iv) display the relative densities D_{r}, i.e., $D_{\mathrm{r}}=D_{\text {obs }} / D_{\mathrm{x}}$, here, $D_{\text {obs }}$ and D_{x} are bulk and theoretical densities, respectively, of diamond/ SiC composites fabricated by two processes, i.e., via "I" and "II" before and after HIPing denoted as (i), (ii) and (iii), (iv), respectively, as a function of intended content of SiC . In the D_{r} before HIPing the values of (i) only calcined materials are much lower than those of PECPSed (iii), it might be due to activated pressing during heat treatment.

Fig. 2 XRD patterns of diamond/SiC composites: (a) $\sim(d)$, calcined $\left(950^{\circ} \mathrm{C} / 2\right.$ $\mathrm{h} / \mathrm{vac}$.) and (e) $\sim(\mathrm{h})$ sintered by PECPS $\left(1450^{\circ} \mathrm{C} / 10 \mathrm{~min} / 50 \mathrm{MPa} /\right.$ vac.), followed by HIP $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}\right)$.

Fig. 3 Relative densities of diamond/SiC composites fabricated under various conditions as a function of SiC content.

However, after HIPing the difference in the D_{r} between " I " and "II" as shown in (ii) and (iv) is a little. Here, it should be noted that in "I", there is a decline tendency of D_{r} for both (i) and (ii), on the contrary, an accession tendency of D_{r} for both (iii) and (iv) in the SiC rich region.

Then their microstructures were observed. Fig. 4 shows SEM photographs of the fracture surfaces of diamond/SiC composites with $65 / 35$ and $50 / 50 \mathrm{vol} \%$ compositions. The upper photographs (a) and (b) are the composites fabricated via "I", and the lower (c) and (d) via
"II", both followed by HIPing. Large diamond particles and small (gray: SiC and black: diamond) grains are observed, and their relative densities D_{r} are also shown to the right side of photograph. In "I', a high $D_{\mathrm{r}}(93.3 \%)$ is achieved in diamond $/ \mathrm{SiC}=65 / 35 \mathrm{vol} \%$, and in "II" a high $D_{\mathrm{r}}(90.7 \%)$ is achieved in diamond $/ \mathrm{SiC}=50 / 50 \mathrm{vol} \%$. It is clear that dense grain-boundary consisting of fine SiC and small diamond grains could bring a high D_{r}, in addition to this, good contact, or good adhesiveness between large diamond particle and grain-boundary also has much effect on the densification. Based on these data, in the SiC rich composites, "II" was expected to show higher D_{r}. Fig. 5 shows XRD patterns of diamond/SiC composites added with $\mathrm{B}_{4} \mathrm{C}$, their content changed from $0,1,3$ and $5 \mathrm{vol} \%$: (a) $\sim(\mathrm{d})$ materials sintered by PECPS at $1350^{\circ} \mathrm{C}$ and (e) $\sim(\mathrm{f})$ sintered by additional HIP $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}\right)$. With increasing the amount of $\mathrm{B}_{4} \mathrm{C}$ addition after PECPS, a lot of Si and $\mathrm{B}_{4} \mathrm{C}$ diffraction peaks were observed around $2 \theta=26.5^{\circ}$ and $2 \theta=37.5^{\circ}$, respectively.

Fig. 4 SEM photographs for the fracture surfaces of diamond/SiC composites: (a) $\sim(b)$, calcined $\left(950^{\circ} \mathrm{C} / 2 \mathrm{~h} /\right.$ vac.) and (c) $\sim(\mathrm{d})$ sintered by PECPS $\left(1450^{\circ} \mathrm{C} /\right.$ $10 \mathrm{~min} / 196 \mathrm{MPa} / \mathrm{Ar}$), followed by HIPing ($\left.1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}\right)$.

Fig. 5 XRD patterns of diamond $/ \mathrm{SiC}=55 / 45 \mathrm{vol} \%$ composites added with $\mathrm{B}_{4} \mathrm{C}$: (a) $\sim(\mathrm{d})$ sintered by PECPS at $1350^{\circ} \mathrm{C}$ and (e) $\sim(\mathrm{f})$ sintered by HIP $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196 \mathrm{MPa}\right.$ /Ar).

Furthermore, it should be noted that the $\mathrm{B}_{4} \mathrm{C}$ addition enhanced the formation of both cubic (\#29-1129) and hexagonal (\#29-1126) SiC at the same time at $1350^{\circ} \mathrm{C}$ PECPS.After HIP at $1450^{\circ} \mathrm{C}, \mathrm{B}_{4} \mathrm{C}, \mathrm{SiC}$ and graphite were recognized in the composites up to $5 \mathrm{vol} \%$ addition. The values of D_{obs} and D_{r} of composites were measured and calculated, respectively.

Fig. 6 represents the D_{r} for composites as a function of $\mathrm{B}_{4} \mathrm{C}$ content. They were decreased once at $1.0 \mathrm{vol} \%$, and then gradually increased until about 92.4% with $5.0 \mathrm{vol} \%$ addition. Fig. 7 shows their microstructures observed by SEM using back-scattered electron image (BEI); (a) 0 , (b) 1.0 , (c) 3.0 and (d) $5.0 \mathrm{vol} \% \mathrm{~B}_{4} \mathrm{C}$ added composites; as BEI proves that the heavier elements give brighter image than those of the lighter elements, therefore, both large dark
gray blocks and small particles in the grain-boundaries, are large and small diamonds, respectively, and bright grain-boundary matrix might be SiC. However, in these photographs $\mathrm{B}_{4} \mathrm{C}$ particles could not be recognized or distinguished from small diamonds among gain-boundaries due to both fine particles and as the nearly same light elements as diamond.

Fig. 6 Relative densities of $\mathrm{B}_{4} \mathrm{C}$-added diamond $/ \mathrm{SiC}=55 / 45 \mathrm{vol} \%$ composites as a function of $\mathrm{B}_{4} \mathrm{C}$ content fabricated using PECPS at $1350^{\circ} \mathrm{C}$ for 10 min under 50 MPa in a vacuum, followed by HIP $\left(1450^{\circ} \mathrm{C} / 2 \mathrm{~h} / 196\right.$ $\mathrm{MPa} / \mathrm{Ar}$).

Fig. 7 SEM (back-scattered image:BEI) photograph of for the fracture surfaces of $\mathrm{B}_{4} \mathrm{C}$-added diamond/SiC=55/45 vol\% composites fabricated using PECPS at $1350^{\circ} \mathrm{C}$ for 10 min under 50 MPa in a vacuum, followed by HIP $\left(1450^{\circ} \mathrm{C} /\right.$ $2 \mathrm{~h} / 196 \mathrm{MPa} / \mathrm{Ar}$).

Then, their mechanical property, especially, hardness was measured. Vickers hardness H_{v} of composites was shown in Fig. 8 [I]. Though much scattering is observed with increasing $\mathrm{B}_{4} \mathrm{C}$ content, the average value of H_{v} increased gradually from around 37.3 to 40.5 GPa at 5 $\mathrm{vol} \% \mathrm{~B}_{4} \mathrm{C}$ addition. In Fig. 8 [II], an laser microscopic image of 'Vickers indent", a SEM (BEI) and an energy-dispersive spectroscopic (EDS) images of the microstructure of $5.0 \mathrm{vol} \%$ $\mathrm{B}_{4} \mathrm{C}$ added composite are presented. The indent size is very small which proves high hardness, and by comparing SEI and EDS images, it is clear that each particle, such as small diamond, $\mathrm{B}_{4} \mathrm{C}$ and SiC are homogeneously dispersed. This homogeneous dispersion, thermal expansion coefficient α difference between $\operatorname{SiC}\left(\alpha: 4.3 \times 10^{-6} \mathrm{~K}^{-1}\right)$ and $\mathrm{B}_{4} \mathrm{C}\left(\alpha: 2.3 \times 10^{-6} \mathrm{~K}^{-1}\right)$ and high Young's modulus ($385 \sim 430 \mathrm{GPa}$) induced high compression stress into SiC grain-boundary, which might bring higher H_{v} value than those (about 23.5 GPa) reported previously [5]

Fig. 8 (I); Vickers hardness H_{v} of diamond $/ \mathrm{SiC}=55 / 45 \mathrm{vol} \%$ composites sintered by both PECPS \& HIP as a function of $\mathrm{B}_{4} \mathrm{C}$ content, (II); microphotographs of Vickers indents, upper: laser microscope, middle: BEI figure, lower: EDS image.

Conclusion

Dense diamond $/ \mathrm{SiC}=50 / 50 \mathrm{vol} \%$ composites have been fabricated from the mixtures of diamond and Si powders using pulsed electric-current pressure sintering (PECPS) at $1350^{\circ} \mathrm{C}$ for 10 min under 50 MPa in a vacuum, followed by HIP at $1450^{\circ} \mathrm{C}$ for 2 h under 196 MPa in Ar with a liquid state sintering. This composite reveals high Vickers hardness H_{v} of 37.3 GPa . Furthermore, a small amount of $\mathrm{B}_{4} \mathrm{C}$ addition enhanced the H_{v} up to about 40.5 GPa due to high compression stress induced into SiC boundary matrix.

Acknowledgement

This work was financially supported by the Program for the Strategic Research Foundation at Private Universities, 2013-2017, the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). The authors thank to Dr. S. Hosomi of Tomei Diamond Co., Ltd., for supplying various kinds of diamond powders. Also the authors thank to Dr. Taguchi of Doshisha University for measuring XRD of diamond/SiC composites and advice about their data.

References

[1] F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Jr., Man-Made Diamonds, Nature, 176 (1955) 51-55.
[2] R. Berman, F. Simon, On the Graphite-Diamond Equilibrium, Zeit. Electrochem., 59, 5 (1950) 333-38.
[3] H. Sumiya, N. Toda, S. Satoh, Growth rate of high-quality large diamond crystals, J. Crystal Growth, 237-239 (2002) 1281-1285.
[4] S. Kume, K. Suzuki, H. Yoshida, Hot Isostatic Pressing of Diamond-Containing Inorganic Composites, pp. 53-55 in Physical Properties of Composites, Proceedings o $125^{\text {th }}$ TMS Annual Meetings Symposium, The Minerals, Metals and Materials Society, Warrendale, PA, 1996
[5] M. Shimono, S. Kume, HIP-sintered composites of C(diamond)/SiC, J. Am. Ceram. Soc., 87, 4 (2004) 752-55.
[6] M. Tokita, Trend in Advanced SPS Spark Plasma System and Technology, J. Soc. Powder Tech. Jpn., 30 (1993) 790-804.
[7] K. Hirota, Y. Takaura, M. Kato, Y. Miyamoto, Fabrication of Carbon Nanofiber(CNF)-Dispersed $\mathrm{Al}_{2} \mathrm{O}_{3}$ Composites by Pulsed Electric-Current Pressure Sintering and their Mechanical and Electrical Properties, J. Mater. Sci.,42[13] (2007) 4792-4800.
[8] K. Hirota, M. Shima, X. Chen, N. Goto, M. Kato, T. Nishimura, Fabrication of dense $\mathrm{B}_{4} \mathrm{C} / \mathrm{CNF}$ composites having extraordinary high strength and toughness at elevated temperatures, Mater. Sci. Eng. A, 628 (2015) 41-49.
[9] S. YERAZUNIS, J. W. BARTLETT \& A. H. NISSAN, Packing of Binary Mixtures of Spheres and Irregular Particles, Nature, 195 [7] (1962) 33-35.
[10] J.E. MARION, C.H. HSUEH, A.G. EVANS, Liquid-Phase Sintering of Ceramics, J. Am. Ceram. Soc., 70 [10] (1987) 708-713.
[11] M.I. Mendelson, Average Grain Size in Polycrystalline Ceramics, J. Am. Ceram. Soc., 52, (1969) 443-446 [6] (2009) 607-616.

