

Precise prediction of NNS HIP components through DEM and FEM modelling

Yuanbin Deng, Anke Kaletsch, Alexander Bezold, Christoph Broeckmann

*Institute for Materials Applications in Mechanical Engineering (IWM), RWTH Aachen University

HIP17 - 12th International conference on Hot Isostatic Pressing Sydney Australia, 08.Dec.2017

Content

Introduction

- Purpose of the study
- Process description

Simulation of HIP Process with "Image Analyzed" Densities Distribution

- "Image Analyze" for investigation of initial density distribution
- FEM Simulation

Simulation of HIP Process with DEM simulated Densities Distribution

- Introduction of DEM and Modelling Approach
- Validation, Simulation and Comparison

Summary and Outlook

Purpose of the study

RWTHAACHEN UNIVERSITY

Welded Capsule (SS304) filled with powder (SS316L) before HIP Process

Capsule (SS304) filled with powder (SS316L) consolidated to full dense after HIP Process

- Anisotropic shrinkage of capsule during PM HIP:
 - Inhomogeneous powder densities distribution in the capsule
 - Temperature gradients and inhomogeneity in the HIP Unit
 - Imperfection of material

Process description

HIP process in general: (a) Capsule production; (b) Filling powder, tapping and vibration; (c) Evacuation; (d) Sealing capsule; (e) Applying high temperature and high pressure; (f) Full density HIPed component

Content

Introduction

- Purpose of the study
- Process description

Simulation of HIP Process with "Image Analyzed" Densities Distribution

- "Image Analyze" for investigation of initial density distribution
- FEM Simulation

Simulation of HIP Process with DEM simulated Densities Distribution

- Introduction of DEM and Modelling Approach
- Validation, Simulation and Comparison

Summary and Outlook

"Image Analyze" for investigation of initial density distribution

RD [%]

FEM densification model

HIP Simulation with determined densities field in the capsule

RD [%]

55 55

O

Content

Introduction

- Purpose of the study
- Process description

Simulation of HIP Process with "Image Analyzed" Densities Distribution

- "Image Analyze" for investigation of initial density distribution
- FEM Simulation

Simulation of HIP Process with DEM simulated Densities Distribution

- Introduction of DEM and Modelling Approach
- Validation, Simulation and Comparison

Summary and Outlook

Process description

RWTHAACHEN UNIVERSITY

HIP process in general: (a) Capsule production; (b) Filling powder, tapping and vibration; (c) Evacuation; (d) Sealing capsule; (e) Applying high temperature and high pressure; (f) Full density HIPed component

- mathematical description of single objects / particles / granules
- meshless method compared to FEM
- interactions between objects only at contact points

Advantages:

- Few equations which have to be solved for each object
- Forces and motions can be investigated for each single object, which are usually not measureable

Limits in usage:

 Computing time-consuming for real particle systems consists of billions of elements

DEM Modelling Approach

Materials:

- Stainless Steel 316L (Powder)
- SS304 (Underlayment)

Particles: radius 250 µm

Density ρ 7800 kg/m³ Particle radius r 250 µm Young's modulus EPoisson's ratio vCoefficient of restitution $c_{restitution}$ Coefficient of static friction $c_{friction}$ Coefficient of rolling friction $c_{rolling}$

Capacity: 10⁹ Particles

- Iron powder 500 kg
- Ti-Alloys powder 300 kg

Rayleigh time increment:

$$\Delta t_R = \frac{\pi r \sqrt{\rho/G}}{(0.1631 \, v + 0.8766)}$$

Hertz time increment:

$$\Delta t_{H} = 2.87 \left[\frac{(\rho(4/3)\pi r^{3})^{2}}{rE^{2}v_{max}} \right]^{0,2}$$

$$\Delta t = 0,20 \min(\Delta t_R, \Delta t_H)$$

Time increment 0.000001s

Validation - Flow test

Angle of repose

Deviation: 2.9%

Simulation Model

15

SS316L Powder Time: Exp. 18.5 s / 50g, Sim. 20.1s / 50g Deviation: 1.6 s , 10.2 %

Filling process using DEM Simulation

Filling process using DEM Simulation

Z = 0

HIP Simulation with determined densities field in the capsule

HIP Simulation with determined densities field in the capsule

Relative Density 1.000 0.971 1200 120 0.942 1000 100 0.913 Temperature [°C] 0.883Pressure [MPa] 80 800 0.854 0.825 600 60 0.796 0.767 400 40 0.738 0.708 200 20 0.679 **Basic HIP Cycle** 0.650 **0**⊣ 0 0 20000 10000 26400 Time [s] Cylinder Capsule Thickness: 1.5 mm Element size~2mm Capsule material: SS304 Powder material: SS316L

Comparison of initial and final shapes

21

Content

Introduction

- Purpose of the study
- Process description

Simulation of HIP Process with "Image Analyzed" Densities Distribution

- "Image Analyze" for investigation of initial density distribution
- FEM Simulation

Simulation of HIP Process with DEM simulated Densities Distribution

- Introduction of DEM and Modelling Approach
- Validation, Simulation and Comparison

Summary and Outlook

- Summary
 - Simulation approach with coupled DEM and FEM Modelling has been used to calculate the capsule filling densities and predict the densification behavior of HIP Process.
 - The simulation results correspond well with the experimental measurement.
- Outlook
 - Influences of particle size distribution
 - Influences of pre-desification process, vibration and tapping
 - Influences of more complex shape

Sim. and Exp. of HIP Process chain

RNNTHAA

Acknowledgement

This work was performed under the support from the RWTH Aachen University HPC Compute Project No. rwth0248.

Thank you very much for your attention!

Yuanbin Deng

IWM – Institute for Materials Applications in Mechanical EngineeringRWTH Aachen UniversityAugustinerbach 452062 Aachen

www.iwm.rwth-aachen.de