

Toughness of duplex steel produced by PM-HIP

Christoph Broeckmann

Institute for Materials Applications in Mechanical Engineering (IWM) RWTH Aachen University Germany

HIP17 – 12th International conference on Hot Isostatic Pressing 5-8 December 2017, Sydney, Australia

- 1. Introduction
- 2. Duplex steel produced by Powder-HIP

Outline

- 3. Influences on impact toughness by
 - production method (as cast, as forged, PM-HIP)
 - local stress triaxiality (notches)
 - sigma phase
 - argon content
- 4. Summary

Schaeffler-Diagram

Distributor piece for sub sea applications

steel:	AISI 318LN
produced by:	powder HIP
weight:	500 kg

Charpy-V-notch-toughness:

 $T = -46^{\circ}C$: $a_{\kappa} = 75 - 110 J$

courtesy by: Sandvik Powdermet AB

steel grade:	AISI 318LN				
production:	powder HIP				
Charpy-V-notch toughness:					
$T = 20^{\circ}C : a_{\mu}$ $T = -46^{\circ}C : a_{\mu}$	> 150 J > 70 J				

courtesy by: Metso AB

Factors influencing toughness

loading conditions:

- thermal activation of deformation mechanisms
 - temperature
 - deformation rate
- stress triaxiality
 - notches

microstructure of the material:

- crystal lattice
- grain size
- non metallic inclusions
- in case of duplex steels: intermetallic phases
 - σ-phase
 - α'-Phase
- in PM-HIP materials
 - oxides at the prior particle boundaries (PPB's)
 - Ar-voids

Toughness – temperature diagram (schematic)

production	chemical composition [weight- %]						
route	С	Si	Mn	Cr	Мо	Ni	N
PM HIP	0,015	0,68	1,02	22,20	3,09	5,19	0,189
(powder)							
continuous cast	0,020	0,50	1,71	22,46	3,36	5,40	0,184
+							
hot forged							
sand cast	0,029	0,72	1,35	23,07	2,78	6,50	0,181
EN 10088	≤ 0,03	≤ 1,0	≤ 2,0	21,0 -	2,5 -3,5	4,5 - 6,5	0,10 -
				23,0			0,22

gas atomized powder:

nortiala aiza diatributian:	particle size [µm]	500	250	125	106	63	45	
particle size distribution.	fraction < [%]	100	84	47	37	18	10	
oxygen content of the powder:	85 ppm							
apparent density:	4,69 g/cm ³							
tap density:	5,30 g/cm ³							
capsule size:	D = 110 /	200 m	ım, H =	235 m	m			
HIP-cycle:	holding te	empera	ature:	114	40 °C			
	holding ti	me:		20	0 min			
	pressure:			10	10 bar			

HIP cycle

time between 940°C and 750°C: 45 min

microstructure as HIP

heat treatment of the PM-HIP-grade:

- solution annealing at 1060 °C for 3 h
- quenching in water

State	phase fraction [vol %]				
	austenite	ferrite	σ-phase		
as HIP	50,9 ± 1,3	46,8 ± 2,2	1,3 ± 0,2		
HIP + solution annealed	50,5 ± 1,4	49,4 ± 1,4	0		

Microstructure of duplex steel after solution annealing

RNTHAACH

Testing of Charpy notch-toughness

max. energy of the hammer:

variation of testing temperature:

specimen geometry and variation of notch geometry:

300 J

-196°C bis +400°C

Charpy toughness of PM-HIP duplex steel influence of heat treatment and notch geometry

Testing Temperature T [°C]

- capsule size: D 110 mm x H 230 mm:
 capsule material: AISI 304
 - relative filling density: 66 69 %
 - evacuation-process:
 - flushing with He for leak test
 - 5 x evacuation down to 10-3 mbar and flushing with Ar (1.5 bar)
 - adjusting the final Ar pressure according to the desired Ar-content
 - HIP-cycle: holding temperature: 1140 °C
 holding time: 200 min
 pressure: 1010 bar
- determination of Ar-content:
 analyser type Eltra-Werf

Ar-pores

Microstructure with Argon pores in a sample with 1.0 ppm Ar

RNTHAACH

Influence of Argon content on notch toughness – V-notch

testing temperature T [°C]

Influence of Argon content on notch toughness – U-notch

testing temperature T [°C]

- The effects of manufacuturing method, heat treatment, notch geometry and Arcontent on the Charpy notch-toughness of AISI 318 duplex steel have been investigated.
- Independent of the testing temperature the toughness of PM-HIP steel is superior to cast material.
- PM-HIP material shows higher toughness compared to forged steel at temperatures lower than -50°C.
- Even a very small amount of σ -phase drastically reduces the toughness.
- A small notch radius leads to an increase of the BDTT and a decrease of the toughness level in the upper shelf.
- Toughness is very sensitive to the Ar content. 90 ppm of Ar lead to brittle fracture even at higher temperatures.

The author would like to thank

- Mrs. Vanessa Derichs, Mr. Johannes Kunz, Mr. Thomas Güthoff, Mr. Robert Mager, Mr. Henrik Wünsch for their contribution to the lecture,
- Mr. Bengt Olof Bengtson from Carpenter Powder Products AB for the delivery of the powder,
- The company Deutsche Edelstahlwerke and Schmolz&Bickenbach Guss for delivery of the cast and forged grades and
- Mrs. Kathrin Horrenkamp from Bodycote HIP GmbH in Haag-Winden, Germany, for performing the Ar-Analysis.

Thank you for your Interest!

Prof. Dr.-Ing. Christoph Broeckmann

IWM – Institute for Materials Applications in Mechanical EngineeringRWTH Aachen UniversityAugustinerbach 452062 Aachen

www.iwm.rwth-aachen.de