

Australian Government

Past and Present Applications of Synroc

E. R. Vance, D. J. Gregg and D. T. Chavara

Classes of Nuclear Waste

- Low-level (mining waste, hospital wastes; less than 100 MBq/L)
- Intermediate level (secondary wastes from nuclear power plant operations; more than 100M Bq/L)
- TRU= actinide-bearing waste having > 100 nCi/g (for example 1.6 ppm of ²³⁹Pu or 140 ppm of ²³⁷Np)

$$(1Ci = 37GBq)$$

High-level: spent power plant fuel or reprocessing waste ~10¹³-10¹⁴ Bq/L

- Spent fuel in storage (many thousands of MT from the ~400 power reactors worldwide)
- Acidic liquid wastes from reprocessing fuel (~1000 Ci/L)
- Defence wastes from Pu production (~ 1 Ci/L; millions of litres in US). Neutralised for storage in SS tanks but tank leakage can occur and gas buildup a problem-mostly process chemicals

Savannah River Site -- interior of canyon

Waste Forms for HLW

- Via the addition of certain materials, produce by chemical design a near-water insoluble solid (the waste form) plus minimum secondary waste.
- Requirements:
 - Relatively easy to fabricate, even though intensely radioactive (no dust or liquid spray)
 - Low volatility losses of RN during processing
 - High waste loading
 - Nearly insoluble in a range of hot and cold groundwaters

Types of Wasteforms

Ceramic

- HLW / ILWLattice substitution
- 10⁻⁵ g/m²/d

Glass

- HLW / ILW
- Glass network incorporation
- $10^{-3} \text{ g/m}^2/\text{d}$

Glass Ceramic

- HLW / ILW
- Composite glass-ceramic
- Elements targeted to either ceramic or glass
- 10⁻³ -10⁻⁵ g/m²/d

Cement

- LLW
- Continuous porosity
- Diffusion release
- Waste ions located in pore water

PAST APPLICATIONS

Synroc Titanate Minerals

Composition and mineralogy of synroc-C (20 wt%)

- Much more leach resistant in water than silicates and phosphates of supercalcine
- 10-100 times more resistant than borosilicate glasses in short-term MCC-1 tests

Phase	Wt.%	Radionuclides in lattice	
Hollandite, BaAl ₂ Ti ₅ O ₁₄	30	Cs, Rb	
Zirconolite, CaZrTi ₂ O7	30	RE, Zr, An	
Perovskite, CaTiO ₃	20	20 Sr, RE, An	
Ti oxides, mostly TiO ₂	15	none	
Alloy phases	5	5 Tc, Pd, Ru, Rh, Mo, Ag, Cd, Se, Te	

Synroc Titanate Minerals

- 1980s Original synroc-C and its processing technology developed
- Specifically targeted towards immobilising high level waste (HLW) from the reprocessing of spent nuclear fuel from power reactors (PUREX type PW-4b type waste)
- Synroc technology was not sufficiently mature to compete with borosilicate glass (US DOE decision in 1981 to immobilize SRNL HLW in borosilicate glass)
- Glass became the defacto baseline process for the immobilisation of HLW.

SDP – conceptual plant (1980s)

What makes waste problematic for glass

Switch in focus to "problematic" wastes

 High concentrations of refractory metal oxides like alumina and zirconia

low waste loadings in pourable borosilicate glasses

- Require high processing temperature
 - increase in volatile fission product loss
- Chemistry viscosity / conductivity / crystallisation
- Corrosive off-gas (eg. HCI)
- High concentrations of toxic and radioactive elements
- Relatively low waste loadings achievable (plutonium / U).
- Harder to extract fissile material
- Orphan wastes where volumes are low

ANSTO Synroc – HIPing

Benefits from HIP route:

- Zero emissions from high temperature densification
- Significant waste volume reduction (impact on long term storage)
- High density with minimal temperature (grain size)
- Versatile Capable of producing a wide range of waste forms
- No contact between waste and process equipment

Excess Weapons Plutonium Immobilization

- Excess impure weapons Plutonium
- Project in the 1990s with US Labs

Competitively selected by the US DOE to immobilize excess impure weapons plutonium in 1997

(written into the Waste Acceptance System Requirements Document)

Idaho National Laboratory Calcines

Waste Description:

• 4400 m³ heterogeneous calcine, consisting of layered binsets (alumina, zirconia, zirconia-sodium blends reflecting different reprocessed fuel assemblies)

Alumina Calcine ~90% Al ₂ O ₃ ~5% alkali ~3% HgO	Zirconia Calcine ~50% CaF ₂ ~25% ZrO ₂ ~15% Al ₂ O ₃ ~0-8% CdO	
	~15% Al ₂ O ₃	

Calcine challenges for glass...

- Low solubility in glass
- Detrimental to glass properties e.g viscosity
- Corrosive to melter or off-gas system

Impact is to significantly reduce maximum achievable waste loading for glass, What about a glass-ceramic waste form.

Idaho National Laboratory Calcines

Consolidation: Matrix: Waste loading: Durability (PCT-B): Final volume: (relative to untreated calcine) Temp:

Pressure: Off-gas: HIP glass-ceramic **60-90%** 10-100 x EA glass 15-45% reduction

1300°C

100 MPa

very low

2009

JHM borosilicate glass **20-35%** 10 x EA glass 100+% increase

1150°C medium-high

PRESENT APPLICATIONS

ANM Production Cycle

Synroc Intermediate Level Liquid Waste Treatment Plant Project Dissolution, Filtration and Initial Ion-exchange Purification: ILLW

Australian Government

- Funded by U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA)
- The demonstration of practical and economically feasible technologies to treat the waste arising from Mo-99 production
- Nearly all of the Mo-99 is produced in reactors by irradiation of HEU targets
- Provide an additional incentive for conversion to an LEU process
- NECSA
 - Legacy HEU wastes arising from the Mo-99 recovery process that meets the NNSA's non-proliferation objectives
- ANSTO Synroc
 - Extensive waste form expertise
 - Knowledge and capability waste treatment technologies

Work Order 1

• Benefitted from differing expertise

Work Order 2

• Phase 1:

Over 100 small scale samples fabricated

All characterised

Measured against pre-established evaluation criteria

~ 15 formulations recommended for scale-up

Work Order 2

• Phase 2:

 Up-scale to ~ 1 L (up to 6 L)
All characterised and evaluated
Some up to 80 wt.% waste loading and 60% volume reduction
U-extraction from final HEU-bearing wasteform

Only feasible technology to process all Mo-99 wastes is either HIP or vitrification.

CURRENT RESEARCH PROJECTS

- FLiNaK pyroprocessing waste
- Agl sodalite (with NNL) and Cul
- CRADA
- Engineered waste form for spent fuel
- HIPed wasteform revisit from 1990s PIP project

Conclusion

- Focus on waste that is problematic for vitrification
- Working toward cost estimates for Mo-99 production wastes using LEU.
- Substantial progress is being made in several projects, notably immobilisation of ANM waste

Australian Government

