Past and Present Applications of Synroc

E. R. Vance, D. J. Gregg and D. T. Chavara
Classes of Nuclear Waste

- **Low-level** (mining waste, hospital wastes; less than 100 MBq/L)
- **Intermediate level** (secondary wastes from nuclear power plant operations; more than 100M Bq/L)
- **TRU=** actinide-bearing waste having > 100 nCi/g (for example 1.6 ppm of 239Pu or 140 ppm of 237Np)

 \[
 (1\text{Ci} = 37\text{GBq})
 \]
- **High-level**: spent power plant fuel or reprocessing waste
 \[
 \sim 10^{13}-10^{14} \text{ Bq/L}
 \]
HLW

- Spent fuel in storage (many thousands of MT from the ~400 power reactors worldwide)
- Acidic liquid wastes from reprocessing fuel (~1000 Ci/L)
- Defence wastes from Pu production (~1 Ci/L; millions of litres in US). Neutralised for storage in SS tanks but tank leakage can occur and gas buildup a problem-mostly process chemicals
Waste Forms for HLW

• Via the addition of certain materials, produce by chemical design a near-water insoluble solid (the waste form) plus minimum secondary waste.

• Requirements:
 – Relatively easy to fabricate, even though intensely radioactive (no dust or liquid spray)
 – Low volatility losses of RN during processing
 – High waste loading
 – Nearly insoluble in a range of hot and cold groundwaters
Types of Wasteforms

Ceramic
- HLW / ILW
- Lattice substitution
- 10^{-5} g/m2/d

Glass
- HLW / ILW
- Glass network incorporation
- 10^{-3} g/m2/d

Glass Ceramic
- HLW / ILW
- Composite glass-ceramic
- Elements targeted to either ceramic or glass
- 10^{-3}-10^{-5} g/m2/d

Cement
- LLW
- Continuous porosity
- Diffusion release
- Waste ions located in pore water
PAST APPLICATIONS
Synroc Titanate Minerals

Composition and mineralogy of synroc-C (20 wt%)

- Much more leach resistant in water than silicates and phosphates of supercalcine
- 10-100 times more resistant than borosilicate glasses in short-term MCC-1 tests

<table>
<thead>
<tr>
<th>Phase</th>
<th>Wt.%</th>
<th>Radionuclides in lattice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollandite, BaAl$_2$Ti5O${14}$</td>
<td>30</td>
<td>Cs, Rb</td>
</tr>
<tr>
<td>Zirconolite, CaZrTi$_2$O$_7$</td>
<td>30</td>
<td>RE, Zr, An</td>
</tr>
<tr>
<td>Perovskite, CaTiO$_3$</td>
<td>20</td>
<td>Sr, RE, An</td>
</tr>
<tr>
<td>Ti oxides, mostly TiO$_2$</td>
<td>15</td>
<td>none</td>
</tr>
<tr>
<td>Alloy phases</td>
<td>5</td>
<td>Tc, Pd, Ru, Rh, Mo, Ag, Cd, Se, Te</td>
</tr>
</tbody>
</table>
• 1980s Original synroc-C and its processing technology developed
• Specifically targeted towards immobilising high level waste (HLW) from the reprocessing of spent nuclear fuel from power reactors (PUREX type PW-4b type waste)
• Synroc technology was not sufficiently mature to compete with borosilicate glass (US DOE decision in 1981 to immobilize SRNL HLW in borosilicate glass)
• Glass became the defacto baseline process for the immobilisation of HLW.
What makes waste problematic for glass

Switch in focus to “problematic” wastes

• High concentrations of refractory metal oxides like alumina and zirconia

 low waste loadings in pourable borosilicate glasses

• Require high processing temperature

 increase in volatile fission product loss

• Chemistry – viscosity / conductivity / crystallisation

• Corrosive off-gas (eg. HCl)

• High concentrations of toxic and radioactive elements

• Relatively low waste loadings achievable (plutonium / U).

• Harder to extract fissile material

• Orphan wastes where volumes are low
ANSTO Synroc – HIPing

Benefits from HIP route:

• Zero emissions from high temperature densification
• Significant waste volume reduction (impact on long term storage)
• High density with minimal temperature (grain size)
• Versatile - Capable of producing a wide range of waste forms
• No contact between waste and process equipment
Excess Weapons Plutonium Immobilization

- Excess impure weapons Plutonium
- Project in the 1990s with US Labs

Competitively selected by the US DOE to immobilize excess impure weapons plutonium in 1997

(written into the Waste Acceptance System Requirements Document)
Waste Description:

- 4400 m³ heterogeneous calcine, consisting of layered binsets (alumina, zirconia, zirconia-sodium blends reflecting different reprocessed fuel assemblies)

<table>
<thead>
<tr>
<th>Alumina Calcine</th>
<th>Zirconia Calcine</th>
</tr>
</thead>
<tbody>
<tr>
<td>~90% Al₂O₃</td>
<td>~50% CaF₂</td>
</tr>
<tr>
<td>~5% alkali</td>
<td>~25% ZrO₂</td>
</tr>
<tr>
<td>~3% HgO</td>
<td>~15% Al₂O₃</td>
</tr>
<tr>
<td></td>
<td>~0-8% CdO</td>
</tr>
</tbody>
</table>

Calcine challenges for glass...

- Low solubility in glass
- Detrimental to glass properties e.g. viscosity
- Corrosive to melter or off-gas system

Impact is to significantly reduce maximum achievable waste loading for glass, What about a glass-ceramic waste form.
Idaho National Laboratory Calcines

Consolidation: HIP CCIM JHM
Matrix:
Waste loading:
Durability (PCT-B):
Final volume: (relative to untreated calcine)
Temp: 1300°C
Pressure: 100 MPa
Off-gas: very low

HIP
- glass-ceramic
- 60-90%
- 10-100 x EA glass
- 15-45% reduction

JHM
- borosilicate glass
- 20-35%
- 10 x EA glass
- 100+% increase

Temp: 1150°C
Pressure: -
Off-gas: medium-high

2009
PRESENT APPLICATIONS
ANM Production Cycle

Plate Target → OPAL Irradiation → Plate Transport

~5000L/yr of ILW to treat

SyMo Facility

Synroc Intermediate Level Liquid Waste Treatment Plant Project

Dissolution, Filtration and Initial Ion-exchange Purification: ILLW
ANSTO Synroc – NECSA Project

- Funded by U.S. Department of Energy’s (DOE) National Nuclear Security Administration (NNSA)
- The demonstration of practical and economically feasible technologies to treat the waste arising from Mo-99 production
- Nearly all of the Mo-99 is produced in reactors by irradiation of HEU targets
- Provide an additional incentive for conversion to an LEU process
- NECSA
 - Legacy HEU wastes arising from the Mo-99 recovery process that meets the NNSA’s non-proliferation objectives
- ANSTO Synroc
 - Extensive waste form expertise
 - Knowledge and capability waste treatment technologies
ANSTO Synroc – NECSA Project

NECSA Process

Uranium Filter Cake

Undissolved residue
WS 2

Radioactive Ion Exchange Column
WS 3

Radioactive Nitric Acid Solutions
WS 4
Work Order 1

• Benefitted from differing expertise

Work Order 2

• Phase 1:

 Over 100 small scale samples fabricated
 All characterised
 Measured against pre-established evaluation criteria
 ~ 15 formulations recommended for scale-up
Work Order 2

• Phase 2:

Up-scale to ~ 1 L (up to 6 L)
All characterised and evaluated
Some up to 80 wt.% waste loading
and 60% volume reduction
U-extraction from final HEU-bearing wasteform

Only feasible technology to process all Mo-99 wastes is either HIP or vitrification.
CURRENT RESEARCH PROJECTS

- FLiNaK pyroprocessing waste
- AgI sodalite (with NNL) and CuI
- CRADA
- Engineered waste form for spent fuel
- HIPed wasteform revisit from 1990s PIP project
Conclusion

• Focus on waste that is problematic for vitrification
• Working toward cost estimates for Mo-99 production wastes using LEU.
• Substantial progress is being made in several projects, notably immobilisation of ANM waste
Thank you