How to Avoid Coloring of Parts in Hot Isostatic Pressing for MIM

Dr. Anders Eklund, Quintus Technologies AB anders.eklund@quintusteam.com
Mr. Magnus Ahlfors, Quintus Technologies AB magnus.ahlfors@quintusteam.com

- Hot Isostatic Pressing
 - Basic info
 - Combining high temperature and isostatic pressure
 - Definition
 - Applying a pressure, absolutely higher than the yield stress of the material at the HIP temperature
 - Disadvantages of conventional HIPing
 - Difficult to heat up
 - Difficult to cool down
 - Difficulty in controlling temperature and pressure
 - High risk of thermal shocks
 - Low efficiency in heat transfer

- Heat Treatment in HIP
 - Recent developments in HIP equipment
 - URQ® – Uniform Rapid Quenching
 - Possibility to perform quenching in a HIP
 - Advantages of heat treatment in HIP
 - Lower scattering of material properties
 - Improved fatigue properties
 - Improved ductility
 - No risk of decarburization of the component surface

- HIP for MIM
 - As sintered MIM parts
 - Relative density after sintering is (88-92.88%)
 - Residual porosity gives lower mechanical properties
 - Large effect on fatigue limit and fracture toughness

- HIPing of MIM parts
 - Discoloration of MIM parts
 - Extra steps in post HIPing, e.g. cleaning, polishing, etc.
 - HIPing of MIM parts
 - Discoloration of High-Chromium parts
 - May require additional cooling steps and then introducing thermal stresses again
 - Can also change surface composition
 - Colors can be blue, yellow, black, green, or cyan

- Summary and Conclusion
 - Inert atm.
gas as pressure medium
 - No risk of decarburization of the component surface
 - Continuous cooling of the gas from the same elevated temperature as the component
 - Low thermal gradients
 - Low risk of distortion and cracking
 - Flexible heat treatment
 - User-friendly process with infinite many holding, heating, quenching and cooling steps
 - Optimum HIP system to avoid discoloration of MIM parts with high-Cr content
 - And of course the regular benefits of HIP
 - Improved ductility
 - Improved fatigue properties
 - Lower scattering of material properties

More information on www.quintustech.com/hot-isostatic-pressing