

Australian Government

Neutron Imaging

Floriana Salvemini Instrument Scientist

Basic principle

Neutrons

Attenuation coeffitients for thermal neutrons [cm⁻¹]

1a	2a	3b	4b	5b	6b	7b		8	1	1b	2b	3a	4a	5a	6a	7a	0
н			94		1							1					He
3.44														2			0.02
Li	Be											в	С	N	0	F	Ne
3.30	0.79											101.60	0.56	0.43	0.17	0.20	0.10
Na	Mg											AI	Si	P	S	CI	Ar
0.09	0.15											0.10	0.11	0.12	0.06	1.33	0.03
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61
Rb	Sr	Y	Zr	Nb	Mo		Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.08	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.11	7.58	0.21	0.30	0.25	0.23	0.43
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.29	0.07	0.52	4.99	1.49	1.47	6.85	2.24	30.46	1.46	6.23	16.21	0.47	0.38	0.27	1		
Fr	Ra	Ac	Rf	Ha		0			1.1.1	1					-		
	0.34	-			-				_	-						_	
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
*Lanthanides	0.14	0.41	1.87	5.72	171.47	94.58	1479.04	0.93	32.42	2.25	5.48	3.53	1.40	2.75			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
**Actinides	0.59	8.46	0.82	9.80	50.20	2.86				1		2	1		2		

Attenuation coeffitients for X-ray [cm⁻¹] (150kV)

1a	2a	3b	4b	5b	6b	7b	8	Ĕ.	1.8	lb	2b	3a	4a	5a	6a	7a	0
н																1	He
0.02																	0.02
Li	Be											В	C	N	0	F	Ne
0.06	0.22											0.28	0.27	0.11	0.16	0.14	0.17
Na	Mg											AI	SI	P	S	CI	Ar
0.13	0.24											0.38	0.33	0.25	0.30	0.23	0.20
к	Ca	Sc	TI		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.14	0.26	0.48	0.73	1.04	1.29	1.32	1.57	1.78	1.96	1.97	1.64	1.42	1.33	1.50	1.23	0.90	0.73
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
0.47	0.86	1.61	2.47	3.43	4.29	5.06	5.71	6.08	6.13	5.67	4.84	4.31	3.98	4.28	4.06	3.45	2.53
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1.42	2.73	5.04	19.70	25.47	30.49	34.47	37.92	39.01	38.61	35.94	25.88	23.23	22.81	20.28	20.22		9.77
Fr	Ra	Ac	Rf	Ha													
	11.80	24.47						_	-								-
-	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
"Lanthanides	5.79	6.23	6.46	7.33	7.68	5.66	8.69	9.46	10.17	10.91	11.70	12.49	9.32	14.07			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Vf	Es	Fm	Md	No	Lr			
**Actinides	28.95	39.65	49.08														

Source: http://www.psi.ch/niag/what-is-neutron-imaging

CCD Detector

Computer tomography reconstruction

DINGO layout

Technical details

- Ikon-I CCD, NEO CMOS camera
- Two Zeiss macro lens (50mm and 100mm)
- Three beam sizes 200 x 200, 100 x 100 and 50 x 50 mm²
 - Pixel size 20 100 μm
 - 25fps fast imaging under development

Applications Overview

Energy

Agriculture & Food

Industrial Manufacture

Biology

Civil Engineering

Geo & Planetary Science

Civil engineering: Concrete

X-rays 250 kV

Thermal neutrons

Planetary Science: Iron meteorites

Catalogue number	Meteorite Name	Chemical group	Structural group
MSN-RI3218	Seymchan	Pallasite	Coarse octahedrite (Og)

K. Sheedy, V. Luzin, S. Olsen, U. Garbe, F. Salvemini, T. Knowles, and P. Munroe, Strange Objects and Strange Explanations: understanding the incuse coinages of South Italy by non-destructive neutron diffraction and tomography, Studies in Mediterranean Archaeology (submitted to SIMA).

Incuse stater - Metapontum c. 550-500 BC

Incuse stater - Sybaris c. 550-500 BC

Non incuse stater - Naxos c. 550-500 BC

Manufacturing: hammering silver into a sheet, cutting off blanks and stamping the image.

Metapontum ACANS 525

Mint date 550-510 B.C. Weight 7.43 g Diameter 29 mm Incuse

Metapontum ACANS 526

Mint date 510-470 B.C. Weight 8.07 g Diameter 24 mm Incuse

Characterization of an Ancient Thai doll

Thailand Institute of Nuclear Technology

Pottery, 1500 A.C. Thailand

Hidden component

Past restoration

[++++++] [mm]

Isosurface extraction for 3D print

Dynamic process

1.25 s 2.75 s

Curiosity

Non-invasive three-dimensional reconstruction of ancient opalised pearls reveals structure

South Australian Museum

The world's first recorded opalised pearls, relics of creatures in an ancient inland sea dating back 65 million years, were unearthed by two miners in the South Australian outback, and have been studied, by means of neutron imaging in collaboration with Dr. Ben Grguric (South Australian Museum).

Cross sections along three directions of an opalised pearl 3D tomographic reconstruction appears in lower right corner.

ABC Media Release

PHOTO: The opailsed pearls are not so valuable as gems but priceless to science, the SA Museum's Dr Ben Grguric says, (Supplied: South Australian Museum)

The world's first recorded opalised pearls. relics of creatures in an ancient inland sea dating back 65 million years, have been unearthed by two miners in the South Australian outback.

MAP: Coober Pedy 5723

Conclusions

Neutron imaging

Technical advantages

- High penetration power
- Complementary contrast
- Non-invasive method

- Metals
- Ceramics
- Rocks
- Fossils
- Organic materials

Materials

Typical Investigations	Outcome
 Civil Engineer Material Science Geoscience Planetary science Biology Medicine Palaeontology 	 Structural and Morphological bulk analysis Porosity, inclusions and defects evaluation Volume segmentation and quantification 3-D modelling

- Cultural Heritage
-

Proposal Deadline 15/09/2016

Nuclear-based science benefiting all Australians

Dingo Team:

Floriana Salvemini Ulf Garbe Joseph Bevitt Klaus-Dieter Liss

https://neutron.ansto.gov.au/Bragg/proposal/index.jsp