## Onsto

# Neutron Imaging 

Floriana Salvemini
Instrument Scientist

## Basic principle



$$
I=I_{0} e^{-\Sigma d} \quad T=\frac{I}{I_{0}} \quad-\ln (T)=\Sigma d \quad \text { with } \quad \Sigma=\sigma n
$$

Trasmittance
Contrast $\propto$ material ( $\sigma$ ) \& thickness (d)

## Neutrons

Attenuation coeffitients for thermal neutrons [cm-1]

| 1 a | 2 a | 3b | 4b | 5b | 6 b | 7 b |  | 8 |  | 1 b | 2 b | 3 a | 4a | 5a | 6 a | 7 a | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\mathrm{He}^{-}$ |
| 3.44 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0.02 |
| Li | Be |  |  |  |  |  |  |  |  |  |  | B | c | N | 0 | F | Ne : |
| 3.30 | 0.79 |  |  |  |  |  |  |  |  |  |  | 101.60 | 0.56 | 0.43 | 0.17. | 0.20 | 0.10 |
| Na | Mg |  |  |  |  |  |  |  |  |  |  | Al | SI | P | S | CI | Ar |
| 0.09 | 0.15 |  |  |  |  |  |  |  |  |  |  | 0.10 | 0:111 | 0:12 | 0.06 | 1.33 | 0.03 |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| 0.06 | 0.08 | 2.00 | 0.60 | 0.72 | 0.54 | 1.21 | 1.19 | 3.92 | 2.05 | 1.07 | 0.35 | 0.49 | 0.47 | 0.67 | 0.73 | 0.24 | 0.61 |
| Rb | St | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 1 | Xe |
| 0.08 | 0.14 | 0.27 | 0.29 | 0.40 | 0.52 | 1.76 | 0.58 | 10.88 | 0.78 | 4.04 | 115.11 | 7.58 | 0.21 | 0.30 | 0.25 | 0.23 | 0.43 |
| Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn |
| 0.29 | 0.07 | 0.52 | 4.99 | 1.49 | 1.47 | 6.85 | 2.24 | 30.46 | 1.46 | 6.23 | 16.21 | 0.47 | 0.38 | 0.27 |  |  |  |
| Fr | $\begin{gathered} \mathrm{Ra} \\ 0.34 \end{gathered}$ | Ac | Rf | Ha |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |  |  |  |
| 2sintara | 0.14 | 0.41 | 1.87 | 5.72 | 171.47 | 94.58 | 1479.04 | 0.93 | 32.42 | 2.25 | 5.48 | 3.53 | 1.40 | 2.75 |  |  |  |
|  | Th | Pa | U | Np | Pu | Am | Cm | Bk | Ct | Es | Fm. | Md | No. | Lr |  | - |  |
| cormice | 0.59 | 8.46 | 0.82 | 9.80 | 50.20 | 2.86 |  |  |  |  |  |  |  |  |  |  |  |



Attenuation coeffitients for $X$-ray [ $\mathrm{cm}^{-1}$ ] ( 150 kV )



## Instrument set-up

## CCD Detector

Scintillator

## Computer tomography reconstruction



## DINGO layout



## Technical details

- Ikon-I CCD, NEO CMOS camera
- Two Zeiss macro lens ( 50 mm and 100 mm )
- Three beam sizes $200 \times 200,100 \times 100$ and $50 \times 50 \mathrm{~mm}^{2}$
- Pixel size $20-100 \mu \mathrm{~m}$
- 25 fps fast imaging under development



## Applications Overview



## Civil engineering: Concrete



X-rays 250 kV


Thermal neutrons

Linear attenuation coefficients


Defect volume [mm ${ }^{3}$.

- 50.00
50.00
40.00
30.00
20.00
10.00
- 

0.00


## Planetary Science: Iron meteorites





Catalogue number
Meteorite Name Seymchan

|  | FIRENZE |
| :---: | :---: |

## Cultural Heritage: The incuse coinages

600 B.C.
540 B.C.
440 B.C.


Asia Minor: first recognize coins
Shortly after - all over Magna Graecia.
Unique incuse technique developed by some Greek
The technique colonies in South Italy


Still no commonly accepted explanation about manufacture process


Incuse stater - Metapontum c. 550-500 BC


Incuse stater - Sybaris c. 550-500 BC


Non incuse stater - Naxos c. 550-500 BC


Manufacturing: hammering silver into a sheet, cutting off blanks and stamping the image.


Metapontum ACANS 525


Metapontum ACANS 526


Mint date 550-510 B.C. Weight 7.43 g Diameter 29 mm Incuse

Mint date 510-470 B.C.
Weight 8.07 g Diameter 24 mm Incuse

## Characterization of an Ancient Thai doll



Pottery, 1500 A.C. Thailand

Hidden component


Manufacturing: 3D porosity map

Past restoration


Isosurface extraction for 3D print

## Dynamic process


$\mathrm{t}=0 \mathrm{~s}$

0.25 s

1.25 s

2.75 s

## Curiosity

## Non-invasive three-dimensional reconstruction of ancient opalised pearls reveals structure

The world's first recorded opalised pearls, relics of creatures in an ancient inland sea dating back 65 million years, were unearthed by two miners in the South Australian outback, and have been studied, by means of neutron imaging in collaboration with Dr. Ben Grguric (South Australian Museum).


Cross sections along three directions of an opalised pearl 3D tomographic reconstruction appears in lower right corner.

ABC Media Release

| 三 Sites | 0) ABC |  |  |
| :---: | :---: | :---: | :---: |
| NEMS NX | LOCATION: Q Sydney, NSW Change v |  |  |

```
At Just In Australia World Business Sport Analysis & Opinion Fact Check Programs
A Part Emal If Facebook [] Twither mare
```

Opalised pearls dating back 65 million years unearthed by miners sifting Coober Pedy spoil heap by Tom Fedorowisan Posled 6 Fel 2016, 11:05am


The world's first recorded opalised pearls,

## Conclusions

## Neutron imaging

## Technical advantages

- High penetration power
- Complementary contrast
- Non-invasive method
- Metals
- Ceramics
- Rocks
- Fossils
- Organic materials


## Typical Investigations

- Civil Engineer
- Material Science
- Geoscience
- Planetary science
- Biology
- Medicine
- Palaeontology
- Cultural Heritage


## Proposal Deadline 15/09/2016

## Qnato <br> Nuclear-based science benefiting all Australians

## Dingo Team:

Floriana Salvemini Ulf Garbe Joseph Bevitt Klaus-Dieter Liss
https://neutron.ansto.gov.au/Bragg/proposal/index.jsp

