

BEPC/BSRF & HEPS

Qing Qin

Institute of High Energy Physics, CAS, Beijing, China 13/01/2016

中國科學院為能物昭湖完施 Institute of High Energy Physics

Outlines

- Introduction to BEPC/BSRF
- Future plan --- HEPS
- R&D project of HEPS
- Summary

Daya Bay

CSNS

BEPC

Yangbajing

中國科·HEPS的招加完施 Institute of Jugn Energy Physics

Beijing Electron Positron Collider (BEPC)

BEPCII — An upgrade project of BEPC

- A double-ring factory-like machine
- Deliver beams to both HEP & SR

3-ring structure

中國科學院為能物昭為完備 Institute of High Energy Physics

Design Goals of BEPCII

Collision

- 1-2.1 GeV Beam energy range
- **Optimized beam energy**
- Luminosity
- Full energy injection
- Synchrotron radiation
 - 2.5 GeV **Beam energy**
 - 250 mA **Beam current**
 - Keep the existing beam lines unchanged

BEPCII: One-machine, Two-purpose (HEP, SR)

院高能物理研究所 Institute of Hiah Eneray Physics

1.89 GeV

1-1.89 GeV

1×10³³ cm⁻²s⁻¹ @1.89 GeV

The Milestones

January 2004	Construction started
May. 4, 2004	Dismount of 8 linac sections started
Dec. 1, 2004	Linac delivered e ⁻ beams for BEPC
July 4, 2005	BEPC ring dismount started
Mar. 2, 2006	BEPCII ring installation started
Nov. 13, 2006	Phase 1 commissioning started
Aug. 3, 2007	Shutdown for installation of IR-SCQ's
Oct. 24, 2007	Phase 2 commissioning started
Mar.28, 2008	Shutdown for installation of detector
June 24, 2008	Phase 3 commissioning started
July 19, 2008	First hadron event observed
May 19, 2009	Luminosity reached 3.3×10 ³² cm ⁻² s ⁻¹

BSRF upgrade — 15# Experiment Hall

Design Parameters of Storage Rings (Dedicated SR Mode)

		a starter	
Energy	GeV	2.5	
Circumference	m	241.13	
Beam current	Α	0.25	
Bunch number		100 – 200	
Bunch current	mA	1.2 – 2.5	
Bunch spacing	m	1.2	
Bunch length	cm	1.3	
RF frequency	MHz	499.80	
Harmonic number		402	
Emittance (x/y)	nm∙rad	ad 100/1	
No. of wiggler		5	
Beam lifetime	hrs	10@2.5GeV, w/ 5 wig.	
		中国科学院高能物,	

「國科学記為能物況が完備 Institute of High Energy Physics

Routine operation of BEPCII

- 6 months running with collision mode for HEP experiments
- 3 months running with dedicated SR mode for users
- 1 month for recovery and machine development
- 2 months for maintenance during summer shutdown.
- Some of SR users can use beam with the parasitic SR mode during collision. 9 beam lines can be used.

中國科學院為能物現研究所 Institute of High Energy Physics

Data taking @ ψ(3770) and Ds in 2011

Data taking @ J/ψ in 2012, and Y(4260) in 2013

中國科學院為能物跟納完所 Institute of High Energy Physics

Luminosity at different beam energy (summary)

Beam energy	Peak luminosity	Max. beam-beam para.
1.89 GeV	8.53 E32 /cm^2/s	0.040
1.55 GeV	2.92 E32 /cm^2/s	0.028
1.84 GeV	5.07 E32 /cm^2/s	0.031
2.01 GeV	6.50 E32 /cm^2/s	0.032
2.13 GeV	6.28 E32 /cm^2/s	0.035, 0.04@450mA
2.18 GeV	5.37 E32/cm^2/s	0.037
2.21 GeV	5.30 E32/cm^2/s	0.037
2.30 GeV	3.0 E32/cm^2/s	0.023

Luminosity & Beam current @ 1.89 GeV

Dedicated SR mode operation

Running as a 2nd generation synchrotron radiation facility --- deliver beam to users for 3 months every year --- 500 – 600 experiments done among 2000 applications

2010.06-07 2010.09-10 2011.06-07 2011.10-11 2012.06-07 2012.09-10 2013.06-07 2013.09-11 2014.06-07 2014.09-10

BSRF today

- 9 front areas: 5 from IDs, 4 from BMs.
- 14 beamlines and 14 stations.
- 2000 hours/year beam time in dedicated SR mode.
- 9 beamlines can be operated in parasitic SR mode, in which 2 wigglers are used.
- ~ 2^{nd} (parasitic/dedicated) generation machine.

- Providing beamtime
 - For basic scientific researches
 - For national and social needs(Health, environment, etc.)

Average about 1000 users, and 150 publications year hysics

Dedicated synchrotron radiation operation

中國科學院為能物理研究所 Institute of High Energy Physics

Top-up injection @ dedicated SR mode

北京正负电子对撞机(BEPCII)实时运行状态

http://202.38.128.208/RealTimeLineChart/syn.html

中國科學院為能物昭納完所 Institute of High Energy Physics

2. Future plan --- HEPS

5

High energy: 6GeV Low emmitance: <0.1nm·rad, can be improved to 0.01nm·rad 48-7BA cell lattice Brilliance: >10²²phs/s/mm²/mrad²/0.1%BW The site has the possibility to build XFEL

Comparing with other facilities

The increase of SR users of China

Structure biology users

中國科学院為能物現研究所 New SR facility is required Institute of High Energy Physics

The SR facilities in mainland China

The trends of SR sources

Conceptual Design Report

- ✓ Lower emittances (4 \forall ≤ 0.1 nm·rad)
- ✓ Higher brilliances (↗2~3 orders)
- ✓ More advanced beam lines and end-stations (Better resolutions, higher speeds, etc.)
- ✓ SR-based research centers

Scientific requirements for HEPS

- Excellent performance
 ✓ Brightness: 10²¹
 ✓ Hard X-ray: 300keV
 ✓ Short pulse: 7 ps
- More ability on the support of scientific platform

Promotion on

- nm level high brightness focusing spot
- ✓ enrgy resolution at submeV
- ✓ Time resolution at ps
- Capacity on penetrating power
- Combination on multipurpose

Requirements in beamlines and stations

- Spatial resolution: Nano-focusing for X-ray
- Energy resolution: 10⁻⁷ (meV@10keV)
- Hard X-ray: 100keV X-ray for material research *in situ* and *in operando*
- Time-resolved experiments: High repetition data acquisition
- In situ experiment setup for synergic techniques
- High heat loads

• ••••

Site

Institute of High Energy Physics

The schedule of HEPS construction

- High Energy Photon Source Test Facility (HEPS-TF): R&D of HEPS
- HEPS-TF project was approved in Feb. 2015 (323.5M RMB)
- The preliminary research was supported by IHEP.
- HEPS
- Construction will start in 2018.
- Commissioning in 2023.

中國科學院為能物現研究所 Institute of High Energy Physics

3. R&D project on HEPS (HEPS-TF)

- In 2010, HEPS R&D project was proposed to the National Development and Reform Committee for the next 5-year Plan. It was approved by Scientific Review Committee. Waiting to be approved by National Council.
- On 18 March, 2011, CAS and Beijing government signed an agreement to establish jointly the Beijing Multi-disciplinary Research Center (later BASIC), in Huairou.
- In Sept. 2011, a Xiangshan Science Conference has been held on the demands in China for high energy Synchrotron source. Users expressed strong interests in HEPS.
- The geographic survey and vibration measurements had been carried out preliminary in 2012 and 2013.
- Formal proposal on HEPS R&D project submitted March 2014.
- Got approval from government on Feb. 12, 2015

中國科學院為能物理研究所 Institute of High Energy Physics

R&D issues of accelerator

- Accelerator physics
 - > M-BA lattice design, other AP issues, booster design

Magnets

- > High-gradient quadrupole and sextupole magnets
- Combined magnets: dipole+quadrupole, quadrupole+ sextupole
- Longitudinal gradient dipole
- Magnet power supply
 - High precision in magnet power supplies: 10ppm
 - **Fast corrector power supplies: bandwidth 5-10kHz**
- Alignment
 - High-precision and stability girder
 - Alignment of magnets

R&D issues of accelerator

- Vacuum
- NEG coating, heating on vacuum chambers due to SR, higher harmonic mode, beam wake field, etc.
- Photon absorbers
- Beam measurement
- > High precision in beam positions and profiles
- Feedback
- Injection
- swap-out
- Strip-line kicker, short-pulse kicker power supply
- Stability & robustness
- Temperature, ground vibration, power supply ripple, alignment and magnetic field errors, etc.

Accelerator physics design

S

• 7-BA lattice

Main parameters of HEPS ring

		and the second second
Beam current I ₀	200	mA
Bunch number $n_{\rm B}$	1296/2160	
Circumference	1295.6	m
Horizontal damping partition number $J_x/J_y/J_z$	1.38/1./1.62	
Emittance	55/5	pm
Working point $(x/y/z)$	113.196/41.227/0.00	
	29	
Natural chromaticity (x/y)	-149/-128.2	
Number of 7BA achromats	48	
Damping time $(x/y/z)$	18.8/26.0/16	ms
Energy loss per turn, U_0	1.995	MeV
Energy spread σ_{δ}	0.000799	
Momentum compaction	3.67×10 ⁻⁵	
RF voltage, V _{rf}	6	MV
RF frequency, f _{rf}	499.8	MHz
Harmonic number	2160	
Natural bunch length σ_z	2.07	mm

Misalignment: with 20µm,100 µr(tilt) (1)

9

misalignment(2)

湖 完 fé Physics

Technical systems of HEPS-TF

- Magnet (high gradient quad, combined function magnets)
- Power supplies
- Injection system
- Beam instrumentation
- Mechanics and alignment
- Insertion device
- RF system
- Vacuum system
- Test environment

R fm

Magnet

- High gradient quad and high gradient dipole/quad combined function magnet
 - 2D design finished
 - Pure iron is used as the yoke and pole material.
 - FeCo or FeCoV alloy will be considered to reduce the power consumption.

• Design parameters of the high gradient magnets

	High gradient quadrupole	High gradient dipole/ quadrupole combined function magnet	
Magnetic length [mm]	690	760	
Aperture [mm]	25	35	
Dipole [T]	—	0.488	
Quadrupole [T/m]	100	62.9	
Good field region [mm]	±5	±5	
High order field [B _n /B ₂]	1×10 ⁻⁴	1×10 ⁻⁴	
Material	Pure iron		
Ampere turns [AT]	8963	8982	ip ()
Power consumption [kW]	13.2	14.7	ou p ysics

Power supply

- 10ppm ultra-high stable power supply
 - Stability requirements: an order of magnitude higher than BEPCII power supplies.
 - For fully-digital power supply, application of highly precious and stable ADC is most important.
 - Research on the water-cooling, air-cooling and power room temperature control to ensure 10ppm stability.

2Hz dynamic output power supply

- Tracking error control: 0.1% current tracking error
 - Special design for digital control strategy
 - Special considerations on mains topology for stabilization and EMI

- ➤ 100 + 50 sin(wt)
- output shows: tracking error better than 0.5 ‰

Fast power supply for corretor

- Fast correction magnet power supply
 - Remote interface has become a part of digital power supply control module.
 - The current setting should be updated greater than 100KHz.
 - Fast link interface (fiber link, 50Mbps) will be developed for BAPS digital power supply.

Injection

• Top-up Injection Schemes

Potential top-up injection schemes for low

emittance ring:

- Off-axial injection (need larger DA)
 - Pulsed bump injection
 - Pulsed multi-pole injection
- On-axial injection (need faster kicker)
 - Swap-out injection (transverse, $Tw < 2\tau$)
 - Accumulate injection (longitudinal, Tw<τ)

(Tw-Pulse width of kicker, τ- time spacing between bunches)

中國科學院為能物理研究所 Institute of High Energy Physics

HEPS Top-up Injection System

On-axial swap-out injection system:

- Injection/ejection direction: Horizontal
- Bunch is swapped-out within a single 10.5m long straight section.
- **Fast kickers: strip-line kicker; Septa:** Lambertson magnet

Horizontal On-axial Swap-out Injection Scheme

中國科學院為能物理研究所 Institute of High Energy Physics

Requirements on Injection System

Distance between injected bunch and stored bunch orbit=5mm and

distance between the septa on the both ends of straight section= 6.5m

- kick angle: $\theta > 0.8$ mrad -> $\theta \ge 3$ mrad
- -Distance between electrodes > 8~10mm, provide aperture clearance to injected beam

-Both end of kickers are allowed horizontal position offset 1 ~2mm

中國科學院為能物躍獅完所 Institute of High Energy Physics

Strength Requirement for Strip-line Kicker

> Injection beam Energy: E=5GeV, kick Angle $\theta=3$ mrad, distance between electrodes : d=10mm, Geometrical factor of electrode: g=1

 $=>U*l>75kV\cdot m$

> Six strip-line kickers: $6 \times l = 6 \times 0.75 \text{ m} => U > \pm 8.4 \text{ kV}$ (Bipolar pulser)

Typical Strip-line Kicker and EM Filed Distribution

中國科學院為能物現研究所 Institute of High Energy Physics

Design Parameter of kicker system

Need further detailed design consideration

Parameters	Unit	HEPS	APS-U
Injected/ejected beam energy	GeV	5~6	6
Minimum spacing of stored bunches	ns	10	11.36
Length of straight section for injection/ejection	m	10.5	5.8×2
Integrate kick angle	mrad	3	2.88
Injection /ejection direction	-	Horizontal	Vertical
Effective length of strip-line kicker	m	0.75	0.72
Distance of strip-line electrodes	mm	10	9
Strip-line kicker quantity	-	6	4
Pulsed voltage of bipolar pulser	kV	± 8.4	± 15
Rise time of pulser (10%-90%)	ns	4	4.5
Flat-top of pulser	ns	5	5.9
Fall time of pulser (90%-10%)	ns	4	4.5

中國科學院為能物招為完施 Institute of High Energy Physics Fast Pulsed Power Supply R&D

Potential solutions is to be considered:

C RF-MOSFET based pulse power superposition technology

- Inductive Adder
- Transmission Line Transformer Adder
- Marx Generator
- Hybrid Adder

DSRD(Drift Step Recovery Diode) based PFL(Pulse Form Line) modulator

Inductive Adder R&D experience

The prototype was special designed for ILC DR strip-line kicker in IHEP,

2011.

10-stage inductive adder assembly and test result

中国科学院高能物理研究所 Institute of High Energy Physics

Beam instrumentation

- Digital Beam Position Monitor electronics
 - RFFE (Radio frequency front end electronics)
 - Fast ADCs
 - High performance FPGA

- Have developed software on the commercial data acquiring system in the lab.
- DAQ system in the lab have 4 tunnels, sampling frequency is 500MHz, and the resolution of ADC is 14 bit.

• Hardware

- Based on microTCA.4, which is specific to high energy physics, including RTM(Rear transition module) and AMC(advanced meggazineae card).
- MicroTCA.4 is highly integrated and has advantages of flexibility and reliability, easy to development and cooperation with international labs and companies.

• X ray imaging system based on KB mirrors

Mechanics and alignment

- Vibrating-wire alignment technique --- to meet the tolerance ±0.03mm between magnet to magnet .
- Precision-tuning magnet girder --- be manipulated through control system with the position monitored by sensors, to meet the tolerance ±0.05mm between girder to girder, and would be capable of beam-based alignment in the future.

	Tolerances	Magnet to Magnet	Girder to Girder
	Horizontal	±0.03mm	±0.05mm
-	Vertical	±0.03mm	±0.05mm
	Roll angle	±0.2mrad	±0.2mrad

Girder Requirements

Specifications		Design value	Acceptance value	
Adjusting	Horizontal	±8 mm	±4 mm	
Range	Vertical	10 mm	±10 mm	
Adjusting Resolution		0.002mm	0.005mm	
Eigen Frequency		>30Hz	>24 Hz	

• Finished

- Design of supporting scheme and selection of adjusting mechanism.
- Derivation of adjusting matrix.
- Study on motion way and range of the adjusting mechanism.
- Design of control process of the girder motion.

Supporting scheme

• Four V-grooves set perpendicular two by two.

Two of eight contact points are for supplement.

- Adjusting mechanism
 - Motor driving Cam mover

Specifications	Values
Size(L X W)	3.8m X 0.8m
Cam Load	2.5T
Cam center offset	7mm
Adjusting range	X(-8.7mm~9.4mm)
	Y(-11.8mm~10.4mm)

 Vibrating wire technique --- based on the measurement of magnetic axis to meet the tolerance ±0.03mm between magnet

to magnet on one girder.

Finished

- Derivation of basic theory
- Design of test bench model
- Design of data acquisition and control system
- Design of sag measurement scheme
- Calculation of vibrating amplitudes
- Design of the sensor circuit and sensor calibration

Scheme of vibrating wire experiments

中國科學院為能物理研究所 Institute of High Energy Physics

- System setup
 - Wire
 - magnets& girder
 - translation stages on both ends
 - sensors & monitor
 - data acquisition and control system.
- BEPCII magnets will be used.

中國科學院為能物理研究所 Data acquisit的新期的受研究所不可以要要的

Linear output range and sensitivity of sensors

outputs of one of the four Sensors

- Signal stability testing
 - After filtering, the voltage variation reduced significantly from 20mV to 6mV.

Linear range: ~0.12mm Sensitivity : 30mV/µm

Sensor circuit

Sensor output test bench

中國科學院為能物現研究所 Institute of High Energy Physics

• Insertion device

- Low temperature undulator
- Small period SC wiggler \rightarrow One SC wiggler on BEPCII

Low temp. undulator		Small period SC damping wiggler	
Length of period	12mm	Length of period	31mm
Effective period No.	160	Minimum gap	10mm
Length of magnet	$\sim 2m$	Deals field	1 057
Gap tuning range	g=5~100mm	Реак пеіо	1.951
Gap working range	g=5~9mm	К	~5.6
Peak field	>0.7T @ g=5mm	Pole No.	20
Peak field error	< 0.1 % @ g=5-9mm	Total length	~0.3m
К	~0.8	中國科學院為能物現研第 Institute of High Energy Phy.	
Working temperature	80K		

Preliminary Design was done

Magnet Design

Туре	Hybrid
Period Length	12 mm
Working Gap	5~9 mm
Peak Field	0.84 T
Magnet Size	36×24×4.1 mm ³
Pole Size	24×19×1.9 mm ³
End Magnet A	36×24×3.6mm ³
End Magnet B	36×21×1.9mm ³
End Pole p	24×18×1.15mm ³
Air Gap A-p	1.7mm
Air Gap B-p	2.4mm
Phase Error (RMS)	< 6° @ g=5-9mm
First Field Integral (x,y)	<50Gscm
Second Field Integral(x,y)	<20000Gscm ²
Quadrupole Normal/Skew	<50Gs
Sextupole Normal/Skew	<100Gs/cm
Octupole Normal/Skew	<100Gs/cm ²

Institute of High Energy Physics

hi

Cryogenic Property Research on PrFeB

Institute of High Energy Physics

Mechanical Structure

Control System

Cooling System

湖 完 /m Physics

Magnetic Measurement Bench

Test environment

- Simulate the real environment for magnets on girder, etc.

• RF system

- Digital low level control system
- Integrate solid state amplifier and cavity system
- Vacuum system
 - NEG coating
 - Vacuum system design for USR machine

R&D issues of beamlines and stations

- Material research in situ and in operando
- Smelting: SAXS, XAFS, Imaging @high-T
- > Machining: XRD, SAXS, Imaging, *in situ*
- In service: XRD, XAFS, Imaging, in operando, timeresolved
- Cooperation with University of Science & Technology Beijing, USTB

R&D in **BLs** and stations

4. Summary

- HEPS will be a high-energy, low-emmitance SR facility.
- The high-brilliance and hard X-ray provided by HEPS should support the *in situ* and *in operando* research, which are essential for many fields.
- The R&D project, HEPS-TF, has been approved recently. The future project, HEPS, is scheduled to start at 2018.
- We hope to cooperate to overcome the challenges in accelerator, beamlines and stations.

Thanks for your attention !

中國科學院為能物理研究所 Institute of High Energy Physics