Contribution ID: 94 Type: not specified ## **Towards Realisation of High-Performance Thermoelectrics for Energy Conversion** Wednesday, 3 February 2016 15:00 (30) Thermoelectric materials directly convert thermal energy into electrical energy, offering a green and sustainable alternative for the global energy market. [1, 2] So far, extensive investigations have been made to improve the thermoelectric efficiency, which governed by the dimensionless figure-of-merit ZT (), where σ is the electrical conductivity, S is the Seebeck coefficient, T is the absolute temperature, and \boxtimes is the total thermal conductivity which is the sum of the contributions from its electron (\boxtimes e) and lattice (\boxtimes L) components. Here, we developed cost-effective, and low-toxic thermoelectrics for high-efficiency energy conversion using novel industry-level approach, coupled with nanostructure and band engineering strategies. Through effective design of thermoelectric materials with engineered chemistry and unique structure, and advanced manufacturing, high-performance thermoelectrics, such as Cu2Se,[3] Bi2Se3,[4] Bi2Te3,[5-8] In3Se4,[9, 10] etc., have been realised in our group. Such innovative technology can be used for harvesting electricity from waste heat or sun light. ## References - [1] Z.-G. Chen, G. Han, L. Yang, et al., Prog. Nat. Sci. 2012, 22, 535. - [2] G. Han, Z.-G. Chen, J. Drennan, et al., Small 2014, 10, 2747. - [3] L. Yang, Z.-G. Chen, G. Han, et al., Nano Energy 2015, 16, 367. - [4] M. Hong, Z.-G. Chen, L. Yang, et al., Adv. Elect. Mater. 2015, 1, 201500025. - [5] G. Han, Z.-G. Chen, L. Yang, et al., Acs Appl. Mater. Inter. 2015, 7, 989. - [6] L. Cheng, Z.-G. Chen, L. Yang, et al., J. Phy. Chem. C 2013, 117, 12458. - [7] L. Yang, Z.-G. Chen, M. Hong, et al., ACS Appl. Mater. Inter. 2015, 7, 23694. - [8] L. Cheng, Z.-G. Chen, S. Ma, et al., J. Am. Chem. Soc. 2012, 134, 18920. - [9] G. Han, Z.-G. Chen, L. Yang, et al., Cryst. Growth & Design 2013, 13, 5092. - [10] G. Han, Z.-G. Chen, C. Sun, et al., CrystEngComm 2014, 16, 393. Primary author(s): Dr CHEN, Zhigang (the University of Queensland) Presenter(s): Dr CHEN, Zhigang (the University of Queensland) Session Classification: Invited talk