

Institute of High Energy Physics, Chinese Academy of Sciences

Lithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Prof. Wei Lu, Dr. Dazhang Li, et al.

On behalf of the IHEP-THU-BNU AARG team

- Introduction to CEPC & CPI
- Recent Progress on CPI
- Summaries and Prospects

100 km Booster \rightarrow Low field dipole problem

10 GeV e-/e+ beam in a 100 km ring

- Minimum magnetic field = 28 Gs
- Field error < 28 Gs * 0.1% = 0.028 Gs
- Field reproducibility < 29 Gs*0.05% = 0.014 Gs
- The Earth field ~ 0.2-0.5 Gs, the remnant field of silicon steel lamination ~ 4-6 Gs.

10 GeV linac + CT coil magnet, or 30 GeV linac + iron-core magnet ? Both lead to significant cost rise ~ 1 B RMB

2023-AFAD-EPC Plasma Injector

CPI: CEPC Plasma Injector, since 2017

Use a \sim 10m plasma accelerator to boost the beam energy from 10 GeV to 30 GeV, or even higher

1st collaborated group meeting on 2017. 03 1st KEY conclusion: use PWFA not LWFA! IHEP+THU+BNU, 15+ staffs and 20+ PhDs

Introduction to CEPC & CPI

- Recent Progress on CPI
- Summaries and Prospects

2023-AFAD-EPC Plasma Injector

PHYSICAL REVIEW LETTERS 127, 174801 (2021)

Editors' Suggestion

High Efficiency Uniform Wakefield Acceleration of a Positron Beam Using Stable Asymmetric Mode in a Hollow Channel Plasma

Shiyu Zhou,¹ Jianfei Hua⁰,¹ Weiming An,² Warren B. Mori,³ Chan Joshi,³ Jie Gao,⁵ and Wei Lu^{1,4,*}
¹Department of Engineering Physics, Tsinghua University, Beijing 100084, China
²Beijing Normal University, Beijing 100875, China
³University of California Los Angeles, Los Angeles, California 90095, USA
⁴Beijing Academy of Quantum Information Sciences, Beijing 100193, China
⁵Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

(Received 21 December 2020; revised 17 August 2021; accepted 7 September 2021; published 22 October 2021)

Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasistatic particle-in-cell simulations show that an over 30% energy extraction efficiency from the wake to the positrons and a 1% level energy spread can be simultaneously obtained. Further optimization is feasible.

DOI: 10.1103/PhysRevLett.127.174801

Gradient~5GeV/m,

Efficiency > 30%, Energy Spread~1.5%

charge slice xz

- High efficiency 60%
- Low energy spread ~0.5%
- Small emittance growth
- Need e- driver, e+ trailer and plasma channel exactly coaxial

2023-AFAD-EPC Plasma Injector

 $x[c/\omega_p]$

Conceptual design V2.0 \rightarrow V3.0: transformer ratio

V2.0

TR≥3.5

$$\eta = \frac{\sum_{i=1}^{n} E_{d} > E_{j}}{\sum_{j=1}^{n} E_{d} > E_{j}} (E_{driver} - E_{j}) q_{j}$$

For CPI V1.0 and V2.0 TR ≥ (45.5-10)/10=3.55

beam	Driver	Trailer
plasma density $n_p (\times 10^{16} cm^{-3})$	0.50334	
Driver energy E (GeV)	10	10
Normalized emittance $\epsilon_n(mm mrad)$	20	100
Length (um)	600	77
(matched) Spot size(um)	3.89	8.65
Charge (nC)	5.8	0.84
Beam distance (um)	149	

Accelerating distance (m)	10.65
Trailer energy E(GeV)	45.5
Normalized emittance $\epsilon_n(mm mrad)$	98.44
Charge(nC)	0.84
Energy spread $\delta_E(\%)$	0.56
Efficiency (%) (driver \rightarrow trailer)	59.1

The noise is over estimated because the simulation particle number is much smaller than real particle number

2023-AFAD-EPC Plasma Injector

2023-04-13

Conceptual design V2.0 \rightarrow V3.0: transformer ratio

1.00

0.75

0.50

0.25

0.00

tricFi

-0.50 H

-0.75

-1.00

0

ield[mcwp/e]

- Transformer ratio R, Energy transfer efficiency 60%
- $Q_w = 1$ nC, $Q_d = 1.67$ RnC, Beam size σ_r
- Initial noise level $\sim \frac{\sigma_r}{\sqrt{N}} = \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5}$
- Drive beam length $k_p L_d \sim 2R$
- Witness beam length $k_p L_w \sim 1$
- Initial energy γ_0
- Accelerating distance $k_p s \sim \gamma_0 R$
- > We can obtain the final beam centroid of the witness beam at the end of the acceleration

$$\succ x_b \sim \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5} \times e^{1.3\left(\frac{\gamma_0}{2}\right)^{\frac{1}{6}} c^{\frac{1}{3}} c^{\frac{1}{3}}_b R^{\frac{1}{3}} \left(\sqrt{2}R + \frac{1}{\sqrt{2}}\right)^{\frac{2}{3}}}$$

> For a 10GeV driver, beam size $k_p \sigma_r = 0.2$, $c=0.7, c_{b}=0.8$

CEPC injector's baseline was changed: 10 GeV \rightarrow 30 GeV \rightarrow TR \geq 2

Ion motion can significantly decrease the hosing instability

2023-AFAD-EPC Plasma Injector

Tilt angle	10 µrad	100 µrad	1 mrad
Bunch charge [nC]	1.197	1.197	0.903
Energy [GeV]	30.01	30.01	30.24
RMS energy spread	0.41	0.41	0.65

Key experimental progress on CPI – plasma dechirper

Yipeng, Wu et al., PRL 122 204804 (2019); Dr. Shuang Liu's PhD Thesis (2020)

2023-AFAD-EPC Plasma Injector

- Introduction to CEPC & CPI
- Recent Progress on CPI
- Summaries and Prospects

Key issues on CPI studies

Key	issues	Preliminary study/ Conceptual design	Detailed and convincing simulations / designs	Experiment test / Prototype
	HTR	\checkmark	\checkmark	×
e- PWFA	Beam quality preservation	\checkmark	\checkmark	×
	Error analysis	\checkmark	×	×

Biggest uncertainty: lack of experimental test

Need a dedicated PWFA test facility for CPI!

Deant prome preservation	V	~	^
Beam merging	\checkmark	×	×
Instrumentation	\checkmark	×	×
Timing synchronization	\checkmark	×	×
Positron beamline	\checkmark	\checkmark	×
Plasma dechirper	\checkmark	\checkmark	\checkmark
Plasma lens	×	×	×
Plasma sources	\checkmark	\checkmark	×
Staging	\checkmark	×	×
	Beam merging Instrumentation Timing synchronization Positron beamline Plasma dechirper Plasma lens Plasma sources Staging	Deam profile preservation \checkmark Beam merging \checkmark Instrumentation \checkmark Timing synchronization \checkmark Positron beamline \checkmark Plasma dechirper \checkmark Plasma lens \times Plasma sources \checkmark Staging \checkmark	Deam profile preservation \checkmark Beam merging \checkmark Instrumentation \checkmark \checkmark \checkmark Timing synchronization \checkmark \checkmark \checkmark Positron beamline \checkmark \checkmark \checkmark Plasma dechirper \checkmark \checkmark \checkmark Plasma lens \times \checkmark \checkmark Staging \checkmark \checkmark \checkmark

TF based on BEPC-II linac and HPL (from THU)

Beams in P1	e0	e1	p1	eL
Energy	\leq 2.5 GeV	/	\leq 2.5 GeV	\leq 0.5 GeV
Peak current	0.5 kA	~ 2 kA	~ 0.1 kA	≥ 5kA
Bunch charge	2 nC	2nC	< 0.1nC	0.2nC
Focal spot	1.1mm	50µm	50µm	1µm
Energy spread	0.5%	0.5%	0.5%	< 5%
Profile	Gaussian	Gaussian	Gaussian	Gaussian
Phase 2 & 3	e1	e2	p2	eL
Energy	/	≤ 2.5 GeV	~ 0.6 GeV	≤ 0.5 GeV
Peak current	~ 2 kA	≥ 6 kA	~ 3 kA	≥ 5kA
Bunch charge	2nC	10 nC	~ 1 nC	0.2nC
Focal spot	50µm	< 10µm	< 20µm	1µm
Energy spread	0.5%	/	/	< 5%
Profile	Gaussian	triangle	Gaussian	Gaussian

Aims of the test facility

- Combination of BEPC-II linac and laser system (2-3 years)
- L-band e- Gun design and fabrication (2-3 years)
- High efficiency HTR (>1) PWFA experiment (2-3 years)
- Damping ring installation and e+ acc. exp. (3-5 years)
- PBA-based FEL studies (3-5 years)

• CPI HTR e- acceleration

- TR~2 scheme seems acceptable
- More damping mechanisms are under consideration. TR≥3 is still alive
- Overall start-to-end simulation is ongoing

CPI e+ acceleration

- Asymmetry beam scheme is well accepted, more schemes are studied, HTR e+ acc. included
- Proposals were submitted to FACET-II committee, waiting for beam time

Experiments time is insufficient

- Plasma dechirper experiment got good results, and experiment on SXFEL is ongoing.
- A dedicated TF for PWFA is crucial, we are working on it
- CPI is still at conceptual design stage, and still has a big gap to TDR or EDR stage compared with other mature systems. No stoppers till now. We, the IHEP-THU-BNU collaborated team, will keep working on it.

Thank you!

