

Neutron Detector with Ceramic GEM

Shoji Uno (KEK) Kazuki Komiya, Yoko Takeuchi (Tokyo Metropolitan Industrial Technology Research Institute)

> at WG2 in AFAD Melbourne 2023.4.13

Q

New GEM

- One big issue is that serious damage occurs in GEM foils.
 - Large charge stores in large capacitance of GEM foil.
 - Small discharge (trigger)

-> Large discharge -> Serious damage
 (Carbonization)

EXEK 202

Carbonization

- To avoid serious damage
 - Ceramic GEM

Q

- There is no hydrogen.
- It is also good for neutron detector.

Two types of ceramic GEM

- Low Temperature Co-fired Ceramic (LTCC)
 - Temperature is relatively lower to make ceramic.
 - Gold electrodes on both surfaces
 - Unfortunately, there is small amount of boron.
 - It is not good for boron coated GEM
- High Temperature Co-fired Ceramic (HTCC)
 - There is no boron.

Q

- Platinum electrodes on both surfaces
- This one should be used for boron coated GEM.

Two applications

- Beam monitor
 - Simple structure is better.
 - Moderate efficiency is good enough in most of cases.
 - Boron coated cathode + single GEM structure
- Detector for energy selective neutron radiography
 - Higher efficiency is desired especially for small pulse neutron sources.
 - Several boron coated GEMs should be stacked.

Beam monitor

- Boron coated cathode + single GEM structure
- One register chain is used to provide each voltage for each part with single HV supply.

Q

Beam monitor for BNCT 紫花子原子核研 Institute of Particle and Nuclea

KURNS Prog. Rep. 2021(2022)45

Institute for Integrated Radiation and Nuclear Science, Kyoto University

Small nuclear plant for various experiments

Counting rate

The detector system can count neutrons up to 3MHz at least.

Q

Higher efficiency for thermal neutron

Expensive ³He Gas is not necessary. No pressure vessel Free readout pattern High resolution Position and **Time** Insensitive against g-ray Capability against high counting rate

Boron coated GEM

- We have tried to produced boron coated GEM for many years.
 - It is not easy for us.
 - Finally, a test production of boron coated GEM just started.
- Just one smaller sample $(10 \text{ cm} \times 5 \text{ cm})$ is available, now.
 - Natural boron

Q

- Boron-10 cathode $(10 \text{ cm} \times 10 \text{ cm})$ is also produced.
- Both samples were tested.

Suitable voltage in Boron GEM

- First step: Pulse height measurement without HTCC GEM
- Second step: Pulse height measurement with HTCC GEM as changing the voltage in HTCC.
- Then, compare the pulse height with/without HTCC GEM

Result

High Voltage in HTCC GEM (V)

• Effective gas gain is around one in boron GEM with 300V.

Q

Test trial of boron GEM

Boron cathode (nB 1µm) + Boron GEM (nB 1µm both sides)
 + LTCC GEM

EXEK 202

A beam test for the thermal neutron at Hokkaido University

10 min measurement

Efficiency becomes higher by factor 3 as compared with a part of the boron cathode only. Boron is really coated on the both surfaces of GEM.

Q

B10-cathode

EXEK 202

Q

KEK50年

Cd-252 radioactive source

	Number of counts in 30 min	Rate (Hz)
Without source	19	0.011
nB	149	0.083
B10	846	0.47

Different topic New test beam line in KEK

New test beam line in KEK

- New test beam line was constructed at AR (one of photon factory ring in KEK).
- A few GeV electron beam is available for users from this year.

Available beam rate

• It is not so strong (~1 kHz so far). Even so, I suppose it is useful for various detector tests.

Summary

- Ceramic GEM is working fine without serious damage.
- Our detector system is compact and simple.
 - Neutron beam monitor is a good application.
- Boron coated GEM comes soon.
 - A test sample is working.

Q

- B10 is also available for sputtering.
- A new test beam line (a few GeV electron) is available for users in KEK from this year.

Backup

Neutron detector with ceramic GEM

Shoji Uno (KEK)

- Ceramic GEM is working fine without serious damage.
- Our detector system is compact and simple.
 - Neutron beam monitor is a good application.
- Boron coated GEM comes soon.
 - A test sample is working.
 - B10 is also available for sputtering.
- A new test beam line (a few GeV electron) is available for users in KEK from this year.

Q

Electronics board

Commercial AC adapter can be used.

Block diagram

Analog monitor for a selected sig.

Neutron detection

EXEK 202

- Thermal (or cold) neutron : Boron
 - $n + {}^{10}B \rightarrow Li + \alpha$ $\sigma = 3840 b$ for 25 meV neutron
 - Large cross section
 - Large ionization loss in gas volume for α (Li nuclei)
- High energy neutron (MeV) : Hydrogen
 - Cross section for Boron becomes small. $\sigma \sim 1/\sqrt{E}$
 - Hydrogen is good target.

Q

- Proton comes out.
 - Still, larger ionization loss than electron from gamma.
- Plastic contents large amount of Hydrogen.
- PET : Polyethylene terephthalate

Neutron Energy (eV)

KEKの標準B-cathode

- 構成
 - KEKの標準ボロンカソード(B10 2µm厚) + LTCC

都産技研の1面の厚みは、 2µm x (6,000/10x5)/(75,000/6) = 0.48µm相当

Q

Energy Selective Neutron Radiography

Resonance absorption imaging

By T. Kai (JAEA) et al. at BL10 in J-PARC

Energy Selective Neutron Radiography

Extinction function for microstructure

H.Sato of Hokkaido University

Sabine function

Two dimensional imaging of crystallite size in the bended iron plates can be done clearly.

Visualization of microstructure for heavy material can be performed with the gaseous neutron detector.

KEK 202

2. Low Temperature Co-fired Ceramic (LTCC) GEM

Lov	v Temperatu	ire Co-f	ired Ceramic	(LTCC) GEM		
(1)Pro	oduction proce	SS		-		素粒子原子核研究所
		_				Institute of Particle and Nuclear Studies
	Green sheet	Condu • Sim	ictive paste	Punching	Sinter	
		• Ma	isk-less No	carbon and r	no hydrogen i	n ceramic.
(2) Str	ong against dis	charge	lt i	s better for th	ne neutron de	tector.
			Past		New	1
			Foil polvimide	LCP	LTCC	-
	Material				CaO $Si_2 + Al_2O$ $\underline{B_2O_3}$	
	Voltage registance	kV∙mm⁻¹	22	26-40	> 15	
	Ark discharge	Sec	135	186	> 300	
						1

Q

測定器開発テストビームライン概要

