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Criteria for operating laser wakefield acceleration (LWFA) 
in blowout regime
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Critical power to reach the 
blowout regime

B. Hidding et al., Phys. Plasmas 16, 043105 (2009)


 = 40 fs, � � 800 nm, f �10 Hz
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normalized vector potential

a0 > 1 is desired to effectively excite 
nonlinear plasma waves 

	 7
C. Joshi , IEEE Trans. Plasma 
Sci. 45, 3134 (2017)
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Conditions for the matched spot size and 
pulse duration in blow-out regime


 = 10 fs => �������
�� 	 4.7 TW
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transverse size reduction

self-focusing effect 
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self-modulation instability

Self-focusing effect and self-modulation instabilities can greatly 
enhance the intensity of a few-/sub-TW pulse for driving LWFA
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formation and longitudinal 
compression of micropulses
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micropulses

plasma density 
perturbation 

plasma wave
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self-focusing critical 
power

plasma frequency

ω2
p(r) =

q2ene(r)

ε0meγe(r)

index of refraction

n(r) =

√
1− ωp

2(r)

ωL
2

For 800-nm pulse :

ne ~ 3 × 1019 cm−3 => Pcr ~ 1 TW 

~ 10 fs �
�	��	 6 �m 

incident pulse envelope modulated pulse envelope



Sub-TW LWFA can be achieved with the use of a thin, high-
density gas target

�

� Introduce 50-fs, 800-nm pulses with an
energy < 50 mJ into dense hydrogen 
gas jets with nep > 1020 cm−3.

� The thin (FWHM length ~ 250 μm), 
high-density hydrogen gas jet can 
reach a maximum peak molecular 
density of 9 × 1020 cm−3 with cryogenic 
cooling.

(a)

A. J. Goers, et al., Phys. Rev. Lett. 115, 
194802 (2015)

Central to this approach is a thin, high density pulsed hydrogen gas jet 
produced by a 100-μm diameter needle orifice. 



�F. Salehi et al., Phys. Rev. X 11, 021055 (2021).

driving pulse: 
2.6 mJ, 5 fs, 1 kHz 

output electrons:
E= 15 MeV
Q= 2.5 pC

driving pulse:
2.1 mJ, 3.4 fs, 1 kHz

nitrogen target:  
ne=1.8 x 1020 cm-3

Gaussian FWHM ~ 100 μm

MJ-level, few-cycle pulse are applied to drive sub-TW LWFA 
at a kHz-class frequency

output electrons:
E= 10 MeV 
Q= 147 fC

hydrogen target:  
ne=2.2 x 1020 cm-3

Gaussian FWHM 
~ 150 μm

Accelerating pulse,
2-2.3 mJ, 3.4 fs,
Imax= 3 x 1018 W cm2

N2 capillary gas jet
�= 100 �m,
Pback= 20 bar,
ne,max=1.5-2 x 1020 cm-3

Lens

CsI(Tl) phosphor screen

Probe pulse

Side imaging/
interferometry

D. Guénot., et al, Nat. Photonics 11, 293  (2017).
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Few-TW LWFA vs. sub-TW LWFA for achieving high repetition-
rate operationp

Few-TW LWFA: Challenging for developing high-average-power, TW-level lasers 

Sub-TW LWFA : Challenging for developing a thin, dense target 

dephasing length
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plasma wavelength
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PL= 1 TW; PL/Pcr = 2 

� A short dephasing length and a low energy gain

� Beam loading can be significant at a pC-level 
bunch charge 

�



Novel kHz-class, TW-level pulse can be produced with related spectral 
broadening technique and applied to realize high-repetition-rate LWFA  

Regenerative amplifier
� Yb-YAG thin disk crystal, water cooled
� Pump source:

� Output pulse:

Multipass cell

T. Nubbemayer, et al., 
Opt.Lett 42, 1381 (2017) 

LG10 
donut 
mode

M. Kaussman, et al., Opt. Lett 
46, 929 (2021) 

� Output: 

CW mode of 969 nm diode laser with 3.5 kW

1030 nm, 200 mJ, 1 ps@ 5 kHz

112 mJ, 37 fs @5 kHz

�

conversion efficiency: 98 %



Our approach for developing few-TW LWFA with multi-cycle pulses 
rests upon the creation of sub-mm gas jets and gas cells

Investigate the sub-TW LWFA when the gas target exhibits a Gaussian 
density profile (gas jet) or a flat-top density distribution (gas cell).

�

Simulation
� Particle-in-cell (PIC) 

simulation for few- / 
sub-TW LWFA

��

� Computational fluid 
dynamics(CFD) 
simulation for high-
density gas cell and 
gas jet 



An experimental station for conducting LWFA driven by 
few-TW or sub-TW pulses is developed at NCU

Pump pulse: 40 fs, 800 nm, Ep -> 200 mJ

�

� Electrons produced from LWFA is measured 
by a Kodak LANEX placed ~1.6 cm 
downstream the gas nozzle.

� With a 0.4-T magnet, energy spectrum 3 - 40 
MeV can be resolved. 

Off-axis parabolic 
mirror (OAP) : f/7

Spot size (FWHM):
vertical ~ 7.5 μm
horizontal ~ 12 μm
80 % energy enclosed in 
the Gaussian-fit profile

On target:
Peak power ~ 3.7 TW
Peak intensity
~ 3.3 x 1018 W/cm2

a0 ~ 1.2

� Plasma density is measured by 
the probe pulse that passes the 
target and is recorded as the 
shadowgraphic image by the 
wavefront sensor.



Thin, high-density gas target can be produced as the gas flow 
out from a nozzle having a diameter ~ 152 μm

� The gas valve opens ~ 
10 ms before the pump 
pulse enters the target 
region and lasts with a 
time interval of 5 ms.

��

g

Bird Precision

pulsed gas valve

N2 gas source up to 700 psi

� Density of the gas 
atoms/plasma in the 
target region can be 
varied by tuning the 
backing pressure of the 
gas supplied.

~ 860-μm (FWHM)  
N plasma distribution

pN = 400 psi
nep �� 2.5 × 1019 cm−3

pN = 600 psi
nep � 2.8 × 1019 cm−3



With PL/Pcrp ~ 3, electrons with peaks in 10 – 20 MeV can be routinely 
generated by 3.7-TW and 3.2 TW pulseg y p

M.-W. Lin et al., Phys. Plasma 27, 103112 (2020).

�

The sub-mm nitrogen jets represents 
a viable approach for generating tens-
of-MeV electrons with satisfactory 
energy and charge stabilities.

Case I
3.7 TW, 400 psi
θy ~ 8.5 mad
θz ~ 22.5 mrad

Case III
3.2 TW, 600 psi
θy ~ 10.4 mad
θz ~ 23.6 mrad

Case I
3.7 TW, 400 psi
Δθy ~ 4.4 mad
Δθz ~ 9.2 mrad

Case III
3.2 TW, 600 psi
Δθy ~ 5.5 mad
Δθz ~ 7.6 mrad



The PIC simulation verifies the free running ionization-induced 
injection and density down-ramp injection

� The peak intensity of the focused pump pulse is greatly enhanced to be a0 > 2.5, 
enabling the ionization-induced injection with N5+→N6+ and N6+→N7+.

� Majority of output electrons are trapped and accelerated during the pulse propagation 
throughout the rear edge (density down-ramp) of the nitrogen target. ��

810 nm,
40 fs,
3.2 TW

a0 ~ 1.18 
in vacuum

Nitrogen 
target of 
860-μm 
width

M.-W. Lin et al., Phys. Plasmas 27, 113102 (2020)

PL / Pcr ~ 3

a0 ~ 2.7 



Using orifices of different diameters offers the flexibility for 
producing nitrogen jets with various density profiles

pN (psi)
178 �m 203 �m

ne 
(1019 cm-3)

FWHM 
(�m)

ne 
(1019 cm-3)

FWHM 
(�m)

300 1.8 931 1.9 1102

350 1.9 1046 2.1 1206

178-�m
orifice, 
PL= 1 TW

Under same backing pressure, gas jets produced by a 203-�m orifice 
typically exhibit a higher peak density and a longer target length than those 
with 178-�m orifice.

178 �m

203 �m

�



�

Using 1-TW pulse and 178-�m orifice, electron beams can be 
generated with nitrogen plasmas of a peak density ne ~ 2x1019 cm-3

��~ 20.7 mrad

��~ 20.1 mrad

��~ 54.8 mrad

��~ 34.7 mrad

���~ 11.2 mrad

���~ 22.1 mrad

���~ 27.4 mrad
���~ 20.1 mrad

350 psi 400 psi

Beam divergence

Pointing fluctuation

pN
(psi)

EP
(MeV)

EFWHM
(MeV)

Q (> 3 MeV)
(pC)

350 	������
���� 	�
����

����� ������
����

(30 mrad)

400 �������
���� �������

���� ��������
�����

(90 mrad)

Increasing pN from 350 psi to 400 
psi causes a significant increase of 
beam divergence and a greater 
charge for the output electrons. 

178-�m orifice, PL= 1 TW

350 psi 400 psi



With 1-TW pulses, a sub-millimeter nitrogen gas cell can also be utilized 
for implementing LWFA to routinely generate electron beams

� Valve opens with tv = 5 ms.
� Pump pulse entered the cell with ta = 10 ms.
� The peak density of gas atoms/plasma 

inside the cell was adjusted by tuning the 
backing pressure pN.

Spot size (FWHM):
vertical ~ 6.5 �m
horizontal ~ 8 �m

Pump pulse: 40 fs, 810 nm
75% energy (43 mJ) enclosed in a 
Gaussian-fit profile 
Peak intensity I0 = 1.3x1018 W/cm2 (a0 = 0.8)

tv : duration for valve open 
ta : pulse arrival

Laser
pulse

�

The 450-�m long gas cell was 
fabricated by shaping a stainless-steel 
tube with an inner gap of 450 ��m
between the and then ablating it with 
3-mJ pulses to machine the entrance 
and exit channels. 



The distribution of nitrogen atom 
density (na) inside the gas cell was 
investigated by 3-D computational 
fluid dynamics (CFD) simulations.

The peak nitrogen atom density (na) 
in the cell :

� pN = 20 psi, na = 7.6 x 1018 cm-3

� pN = 25 psi, na = 9.5 x 1018 cm-3

pN(psi) ne (1019 cm-3) PL/Pcr

20 3.8 1.3

25 4.75 1.6

A shadowgraphy probe beam was set to 
transversely pass through the gas cell and 
measure the plasma electrons outside the 
entrance and exit channels.

A high plasma density ne > 3.8 x 1019 cm-3 is achieved in the cell with a 
backing pressure of pN= 20 psi

As the front foot of the pump pulse 
ionizes the nitrogen ions to N5+, self-
focusing of the pulse is developed with 

��P.-W. Lai et al., Phys. Plasmas 30, 010703 (2023)



��~ 43.4 mrad

�
~ 38.3 mrad

��~ 69.9 mrad

�
~ 57.5 mrad

���~14.1 mrad
���~ 8.1 mrad

���~13.8 mrad

���~10.1 mrad

20 psi 25 psi

With 1-TW pulses, 10-MeV-scale electron beams can be generated 
routinely at pN = 20 and 25 psi

For 15 consecutive shots:

�

pN
(psi)

EP
(MeV)

EFWHM
(MeV)

Q(> 3 MeV)
(pC)

20 �������
���� �������

����� ���������
�����

25 �������
���� ���������

������ ���������
�����

Beam divergence

Pointing fluctuation
20 psi

25 psi

A 25 % increase in nitrogen atom density inside the cell (pN = 20 psi vs 25 psi)  
can double the charge but with prominently increased beam divergence.

P.-W. Lai et al., Phys. Plasmas 30, 010703 (2023)



PIC simulations were performed to examine the self-focusing of the 
pump pulse and the electron injections in LWFA

��

The self-focused pump pulse 
enables ionization injection 
from the creation of N6+ and N7+

when a0 > 1.7.

Focal
position

With pN =  25 psi, nitrogen ion can 
be fully ionized to N7+ and the 
pump pulse defocuses 
considerably because of the overly 
strong ionization-induced 
refraction.

With pN =  25 
psi, it shows the 
appropriately 
defocused pump 
pulse facilitates 
extra electron 
injection within 
the target rear 
side. 

P.-W. Lai et al., Phys. Plasmas 30, 010703 (2023)



Appropriately defocused pump pulse obtained with pN = 25 psi helps to 
enhance the down-ramp injection in the target rear side.

� With pN =  25 psi, the wakefield Ex degrades into a smoother profile 
within x ≈ 300–600 μm along with the appropriately defocused pump pulse
=> Ex overlaps with more electrons in the sheath, so that electron 

injection becomes more effective to increase the charge of accelerated 
electrons.

� Significant dephasing is resulted to limit the majority of the accelerated 
electron to an energy  < 20 MeV.

��

20 psi

25 psi

P.-W. Lai et al., Phys. Plasmas 30, 010703 (2023)



Summary

This work has been supported by the National Science and Technology Council (NSTC) in 
Taiwan by Grant No. MOST 110-2112-M-007-027, MOST 111-2112-M-007-033 

Our results identify the high potential for implementing sub-mm nitrogen 
gas jets and gas cells in the future development of high-repetition-rate 
LWFA driven by few-TW, multi-cycle laser pulses.

��

� Compare to gas jets, gas cells can generally work with a low backing 
pressure < 50 psi to create a sufficiently high gas/plasma density inside 
its confined space.
=> use a continuous-flow, low-pressure gas cell in a LWFA system helps 

to reduce the complexity of sustaining the vacuum level in the 
accelerator stage.

� Repetitive irradiation of pump pulses on the cell wall can probably 
cause rapid heating or even damage to the cell.

� One can shape the density profile of gas jets for improving the properties 
of output electrons but this is challenging in a gas cell.


