AFAD, Melbourne, Australia, Apr. 12-14, 2023

Chip-size-accelerator-enabled single-electron FEL

Yen-Chieh Huang, Luo-Hao Peng, Hossein Shirvani, Wen-Chi Chen

HOPE Laboratory, Institute of Photonics Technologies National Tsinghua University (NTHU), Hsinchu, Taiwan

ychuang@ee.nthu.edu.tw

- I. Dielectric Laser Accelerator
- 2. Dielectric FEL Chip
- 3. FEL chip excited by a single electron
- 4. FEL chip excited by a train of single electrons
- 5. Conclusions

Dielectric Laser Accelerator

accelerator or radiator

Fabricated dielectric planar grating as

periodic single electrons in a nanochannel (in the near

FEL Chip

Yen-Chieh Huang, Luo-Hao Peng, Hossein Shirvani, Wen-Chi Chen, Karthickraj Muthuramalingam, Wei-Chih Wang, and Andrzej Szczepkowicz, "Single-electron Nanochip Free-electron Laser," APL Photonics 7, 096101 (2022). (editor featured article and cover story of the journal).

TABLE I. The first-order design parameters for a 1.5- μ m nano-chip FEL with a silicon ($n_f = 3.4$) grating waveguide on a glass substrate ($n_s = 1.5$).

Design	Electron	Grating	Grating	Film	Impact
wavelength	energy	period	depth	thickness	parameter
(µm)	(keV)	Λ _g (nm)	t _g (nm)	<i>t_f</i> (nm)	<i>l_{ip}</i> (nm)
1.5	50	310	160	240	100

Frequency (PHz)

Time (ps)

Dispersion Diagram

Grating-waveguide FEL driven by Periodic Single Electrons

H_x Field Patterns

-0.05 -

-5 -

-257 -

Harmonic Radiation Spectrum

Conclusions

I. Dielectric laser accelerator and photonic FEL can be integrated into a chip-size structure via microfabrication techniques.

2. Single-electron FEL built upon a dielectric-grating waveguide is numerically demonstrated at 0.2 PHz and its harmonics.

3. Experimental tests are on-going by using a TEM beam.

TEM experimental chamber

Fabricated structure on Si (courtesy of Prof.Wei-Chih Wang of NTHU)

悠是举站第 10406894 位于

繁體中文 | English | 日本語 | 한국어 | Deutsch | Flash |

Rico Touch Your Heart

Thank you for your attention

New Taiwanese Convener for WG4

核子工程與科學研究所 INSTITUTE OF NUCLEAR ENGINEERING AND SCIENCE

NTHU

中文

Home

Home	
About Us	Ŧ
Faculty	Ŧ
Research	Ŧ
Admission	•
Contact Us	

Ming-Wei Lin

Ming-Wei Lin Associate Professor Address : LTM Building Room 609 E-mail : mwlin@mx.nthu.edu.tw Telephone No. : 03-5715131 ext.35555 Laboratory : Photon Source and Radiation Application Laboratory

Discipline

Interaction of Radiation with Matter, Engineering Mathematics I, Introduction to Nuclear Engineering, Applied Photonics

Specialty

Ultrafast optics, nonlinear optics, plasma physics and simulations, laser-based particle acceleration, radiation generation/detection