

Asian Forum for Accelerators and Detectors 2023

Development status of the neutron detectors for instruments at CSNS

Zhijia Sun, Jianrong Zhou, Bin Tang, Yubin Zhao, Yuanbo Chen

Spallation Neutron Source Science Center IHEP, Chinese Academy of Sciences April 12, 2023, Melbourne, Australia

Team introduction and development planning

2 Development of the neutron detectors

- ³He-based, Scintillator, GEM, imaging detector

Introduction to detector and electronics group

Motivation: Develop advanced neutron detectors for CSNS and other neutron sources in China **Responsibility:** Operation, maintenance, research and development of detectors at CSNS **Team:** Professors 3, associate professors 8, 40+ in total, including physics, electronics, software, mechanics

Three neutron sources and the demand for detectors

China Spallation Neutron Source CSNS(100kW)

- Nearly 60 instruments of three neutron sources will be planned in China
- Each instument costs ¥ 100 million, in which detector takes up 30-50%
- The neutron detectors mainly depend on import, a massive, urgent and critical demand for multi-types of detectors

China Spallation Neutron Source(CSNS)

National major science and technology infrastructure during the 12th Five Year Plan

CSNS technical parameters

	Phase I	Phase II
Proton beam power(kW)	100	500
Pulsed repetition frequency (Hz)	25	25
Average beam current (µA)	62.5	312.5
Beam energy(GeV)	1.6	1.6
RCS injection energy (MeV)	80	300
Number of instruments	3	11

Neutron instrument suite

Large-scale scientific facility of Guangdong-Hong Kong-Macao Greater Bay Area

Neutron instrument and detector system

Neutron scattering principle:

Instrument architecture

The function and requirement of neutron detector for instrument

 $(\lambda, \theta) \longrightarrow (t, x, y)$ Typical powder diffraction instrument resolution:

$$\left(\frac{\Delta d}{d}\right)^2 = \underline{\left(\frac{\Delta t}{t}\right)^2} + \left(\frac{\Delta L}{L_1}\right)^2 + \underline{\left(\Delta\theta\cot\theta\right)^2}$$

Time resolution: ~ μ s, Spatial resolution: ~ mm

Detection area: $\sim m^2$ Detection efficiency: $\sim 80\%$

Data-driven Charged particle/ Neutron **Frond-end Digital logic** System Data **Photon detection** convertor electronics electronics for Neutron acquisition Instrumentation (DAQ) (³He, ⁶Li, ¹⁰B) (Sensor) (ASIC) (FPGA) (Based on Kafka)

The framework of detector system at CSNS

CSNS neutron detector development planning

1 Team introduction and development planning

2 Development of the neutron detectors

• ³He-based, Scintillator, GEM, imaging detector

Large area ³He tube array detector

Small Angle Scattering instrument (SANS)

Scientific goals:

- Data range of high confidence: 0.01~0.5 Å⁻¹
- Q_{min} resolution: ~30%
- Adjusted sample size
- Large sample loading space

Moderator	CHM (20K)
MS distance	14 m
SD distance	1~5 m
Detector	120 pcs ³ He 8mm PSD
Effective area	$100 \times 100 \text{ cm}^2$
Resolution	1 cm (FWHM)
Δλ	0.4-8 Å
q range	0.004-3.4 Å ⁻¹

SANS is used to detect the microscopic and mesoscopic structure of the materials in the cale of 1-100nm. Its experiments will include many Target shielding disciplines such as chemistry, physics, biology, materials, geology, etc. Beam shielding moderator Double disk band frame overlapping shuctellimator T0 chopper slit Fast switch monitor detector beam dump mirror width chopper Sample chamber Scattering chamber 0 6.7 7.57 7.8 12 16 6 (m)

SANS large area ³He tube array detector

Multi physics instrument (MPI)

MPI can be used to conduct research on chemical engineering, crude oil and gas recovery, environmental science, renewable energy, separation technology, food safety, biology and pharmacology, etc.

Mechanical design and detector module

Self-developed readout electronics with high spatial resolution

Data acquisition board(DAB)

Boron Al alloy for neutron and electromagnetics shielding

Front end electronics(FEE)

Data acquisition board(DAB)

Detector assembly, tests and installation

May 20-Nov. 15, 2020, Complete the batch assembly of modules and tests in Lab

Assembly and tests **Module appearance** Assemble ³He tube Noise level 2mV **Assemble elctronics** Sigma of NoiseAB ABicor - QA_noise@Lab ••• QB_noise@Lab QA noise@MPI QB noise@MPI Sigma(mV) Tube Number

Oct. 26-Dec. 10, 2020, Complete the detector calibration and the system tests at BL20

System test at BL20

Calibrated 2D Imaging 120 100

50 100 150 200 250 300 350 400 450 500

Calibration result

Spatial resolution with counting rate

1200

Dec. 6, 2020-Mar. 5, 2021, Complete the detector installation and commissioning with the instrument

Bank assembly site

Bank assembly

Bank installation

Monitor installation

Detector installation

Demand analysis on ³He tube detector for CSNS

~ 6000 ³He tubes will be used, ¥100,000 each, about ¥ 600 million in total!

Periods	Technical specifications	Qty	Instrument
2011-2018 (Phase I)	Diameter 8mm, effective length 1000mm, 20 atm	120	SANS
	Diameter 8mm, effective length 300mm, 20 atm	4	MR
	Diameter 25.4mm, effective length 500/300mm, 20 atm	544	MPI
2019-2023 (Cooperative instrument)	Diameter 8mm, effective length 1000mm, 20 atm	512	VSANS
	Diameter 12.7mm, effective length 500mm, 20 atm	928	HP
	Diameter 25.4mm, effective length3000mm, 10 atm	264	HD
	Diameter 12.7mm, effective length 600mm, 20 atm	1376	High resolution
2023-2029 (Phase II)	Diameter 25.4/12.7/8mm, effective length300-3000mm, 10-20 atm	~2000	11 instruments

Self-development on ³He tube detector

Since 2019, CSNS and China Nuclear Power Research Institute have concentrated on the collaboration and development of various types of ³He tubes, aiming to provide mass-produced ³He tubes for the large-scale scientific facilities in China.

- ³He tube detector of three types :
 - -Diameter: 25.4mm, Length: 300-3000mm, 10-20atm
 - -Diameter:12.7/8mm, Length: 300-1000mm, 10-20 atm

-Anode wire resistance: $6-10k\Omega/m$,

Diameter: $\sim 15 \,\mu m$

- Filling pressure accuracy: 0.01atm
- Batch deviation: ±5%

-Wall material: 304 stainless steel,

Thickness: 0.2-0.5mm

- Connector: SHV/ wire leading
- Further interests:
 - -³He tube detector with finer diameter, even 4mm/6mm
 - High spatial resolution along the wire, ~ 2 mm

Self-development on ³He tube detector

At present, several types of ³He tubes have been successfully developed. Beam test results at CSNS show that the critical performances have reached the level of commercial products, and the feasibility of the technical scheme is initially verified.

Channels

100 150 200 250 300 350 400 450 500 X/mm

ASIC for front-end electronics

Schematic diagram of ASIC for low power readout of Helium-3 tube

Parameters	Specification	
Channels	8	
Input charge range	10fC~1pC	
Counting rate	500 kHz	
ENC	1000 e-@15pF	
Linearity	<5‰	
Power Consumption	9 mW/Chn.	

Simulation results when the input charge is 50 fC

We acknowledge Prof. Wei WEI in the IHEP for his strong guidance and advice on this ASIC chip.

The chip die and test board

Large-area scintillation detector (⁶LiF/ZnS(Ag))

2010~2018

WLSFs for y di

Outputs to M-PMTs

2018~2021

2022~2028

Expand application

Time

Fast neutron imaging detector (plastic scintillation screen+SiPM readout) Li glass optical fiber beam monitor (Li glass optical fibre+SiPM readout

Large-area scintillation detector (⁶LiF/ZnS(Ag))

GPPD-scintillation neutron detector

Double layer Scintillator ⁶LiF/ZnS (Ag)

- The scintillator detector with this structure is realized in a large scale use for the first time in the world.
- Multi-anode photomultiplier tube and ASIC electronic digital readout are innovatively used.
- Large-scale scintillator detector arrays will become important candidate for large area coverage of neutron detection.

- Innovative detector man ufacturing process for m ass-production
- Obtained 5 invention pat ents

- □ Spatial resolution: 2mm,
- detection efficiency:
 - >50%@2Å;
- The performances meet the requirements of GPPD for large area of neutron detector

3*5 detector array

40 detector moduls

- Integrated detector module, front-end digital for fast readou
- t, highly integration design,
- easy assembly and maintenance
- The detector can realize large area coverage, expected to be applied in neutron scattering and imaging experiment

Engineering Materials Diffractometer(under construction)

Detector solution: ⁶LiF/ZnS(Ag)+WLSF+SiPM

 d_{L2} d_{n2} 20°

> Oblique screen can effectively improve the efficiency of neutron detection

Technical parameters:

- > Detection efficiency : 40% @ 1Å **≻**Position Resolution: $3mm(H) \times 50mm(V)$ **Time Resolution** : 1µs **Count Rate:** 80 kHz \succ Module size:
 - $200 \text{mm} \times (100 \sim 50) \text{mm}$

Energy-Resolved Neutron Imaging instrument (under construction)

lots of channels and highly cost.

21

High-resolution GEM neutron detector

High-resolution GEM neutron detector

Dedicated ASIC chip and fast FPGA-based digital electronics

Dedicated ceramic GEM for neutron detection

In 2013, the dedicated GEM was proposed: reduce hydrogen containing materials, easy to assemble, operate and maintain, self-developed in China **Neutron transmittance**

Copper

Ceramic Au

Specifications:

Substrate: composite ceramics

Processing technology: standard PCB mechanical drilling

Parameters: thickness 0.2 mm, hole diameter 0.2mm, pitch 0.6mm, accuracy 50µm, Rim 80 µm ◆ Mass production yield: ~80%

Active area: 200mm×200mm							
Institute	GEM type	Insulator substrate	Hole d(µm)	Pitch p(µm)	Copper thickness (µm)	Total thickness (µm)	Copper coverage rate η
CERN	Standard GEM	Kapton	70	140	5	60	77%
	THGEM	FR4	200	500	10-20	200-500	85%
	nGEM	Kapton	70	210	5	60	90%
KEK	GEM	LCP	70	140	5	100	77%
CSNS	Ceramic GEM	Ceramic	200	600	20	200	90%

Production processing

Drilling

Dedicated ceramic GEM for neutron detection

Production process of Ceramic GEM

ultrasonic cleaning

Mechanical drilling

Corrosion

Common problems and improvement:

Inconsistent pore diameter

Vn / V

Irregular pores

Foreign matter in pore

Scratches

300mm*300mm@2020

Improvements: replace the drill bitmore frequently, ultrasonic cleaning, improve the printing ink baking time and packaging

Vn/V

X-ray beam test

Plate making

Chemical cleaning

Large-area boron coating by magnetron sputtering

Research on Boron Coating Technology of Neutron Convertor (Jingtao Zhu) According to the characteristics of the boron coating process, develop a special large-area coating facility with max coating area of 1500mm*500mm.

Main components:

- •Sputtering chamber
- •Magnetron target
- •Sample frame and transmission system
- •Intake system
- •Vacuum pumping system
- •Vacuum measurement system
- system
- •Electronic and computer control system

Magnetron sputtering coating facility

Acceptance meeting

Acceptance experiments

Commissioning and acceptance were completed in October 2020, it has been put in use now.26

Large-area boron coating by magnetron sputtering

Research on Boron Coating Technology of Neutron Convertor

The thickness control precision 1nm, deposition rate 0.075nm/s, Target sweeping speed 3.25mm/s. It takes about 4 hours and 27 times of sweeping the target to coat 1 µm thick film.

Double-sided Ti/B₄C film sample

Test results: thickness non-uniformity is $\leq \pm 1.32\%$ and $\leq \pm 1.32\%$ along 1500mm and 500mm

ASIC chip development

Principle diagram of ASIC for fast readout of GEM (Yichao Ma)

Parameters	Specification
Input charge	± 10 fC ~ ± 400 fC
Counting rate of single channel	>1MHz
Channels	32
Output characteristics	Digital signal: 2.5V TTL
Threshold	External DAC is adjustable

Simulation results when the input is -400fc/1.25Mhz

Chip photo under microscope 2.5mmx5mm

COB package module 2cmx1cm

160 chips available, COB packaging and the performance were completed in May 2020

(1) 2D position sensitive neutron beam monitor

Seven GEM beam monitors were used during phase I of CSNS. They operated successfully for 5 years. It has been considered as standard solution of monitor at CSNS. **Configuration:**

Parameter	Specification
Active Area	50mm*50mm
Max. Neutron Flux	10 ⁸ n/cm ² .s
Pixel size	1.56 mm
Efficiency@1.8Å	0.1 %
Max Counting Rate	1.7 MHz
Working mode	Real-time

Beam Profile at Guide Exit of GPPD @2017

First neutron beam profile measured on November 1, 2017 2-3Å

2D Imaging@SANS M1

45 40 35

30

20

15

E 25

Beam Test at GPPD@2020

Beam Test at SANS@2019

(2) High-efficiency and large-area GEM neutron detector

A high-efficiency and large-area GEM neutron detector was developed to meet the requirements of ENRI and VSANS. Design specifications

Detection efficiency vs convertor

Parameter	Specification
Active Area	200 mm* 200mm
Efficiency	~40%@2Å
Spatial Resolution	\leq 3mm (FWHM)
Ceramic GEM	Pitch: $600\mu m$, hole: $200\mu m$, thickness: $200\mu m$
Boron Convertor	¹⁰ B:>96%, thickness: 1.2 μm
Pixel size	0.78mm
Electronics	64 Ch/ASIC × 8+FPGA+Ethernet
Channel No.	256Ch(X)+256Ch(Y)=512Ch

(2) High-efficiency and large-area GEM neutron detector

Detector inside Readout board ProjectionX Constant 5.629e+04 ± 1.906e+02 60000 Mean 72.12 ± 0.00 Sigma 1.111 ± 0.003 50000 40000 40000 40000 **Spatial resolution:** $FWHM = (2.6 \pm 0.1)mm$ 20000 10000 ᅇ 60 80 100 120 140 160 180 200 20 40 Spatial resolution

Detector inside

Experimental setup

Detector side

Detector appearance

Instaneous counting rate spectrum

Technical test and acceptance @2019.04.19

Detection efficiency measurement

(3) High-resolution GEM neutron detector

A sub-mm high resolution GEM neutron detector is developed to meet the requirements of ERNI

(4) Sealed GEM neutron detector

(5) Fast neutron GEM detector

Neutron imaging experiments using GEM detector

Bragg edge imaging experiment of 304L steel at GPPD(Jie Chen)

Typical applications on other scientific facilities

Neutron beam diagnosing detector @CARR

Neutron beam measurement under different power at CARR reactor

Neutron beam monitor @CMRR

X-ray tracing detector@ National Institute of Metrology

SANS monitor at CMRR

X ray tracking and dose measurement

Neutron imaging detector

Goal: Develop multi-types of neutron imaging detector for CSNS, aiming for ultra-high spatial , timing resolution and large FOV .

	High resolution	General purpose	Large area	Time resolution
Detector types	Gd ₂ O ₂ S:(Tb) +CMOS	⁶ LiF/ZnS+CCD	GEM	 6LiF/ZnS + TPX3Cam nMCP + Pixel ASIC
Imaging area	<5*5cm ²	<20*20 cm ²	>20*20 cm ²	<5*5cm ²
Detection efficiency	~ 40%	~ 20%	~ 40%	~ 20%
Spatial resolution	< 30 μm	30~200 μm	~1000 µm	~ 100µm
Time resolution	None	None	1µs	1µs
Neutron flux	10 ⁶ ~10 ⁸ n/cm ² . s			
Pixels	$512 \times 512 \sim 2048 \times 2048$			

(1) Neutron imaging detector based on CCD camera

Schematic diagram

Detector structure and components

Key specifications:

- •Magnification: 0.15-1.0
- •Working distance: 90-
- 438mm
- •Field of view (FOV):

30mm*30mm->200mm*200mm

•Spatial resolution: 30µm->200µm

(2) Ultra-high resolution neutron imaging detector (~µm) using GOS

Principle diagram

Detector structure and components

Scintillator Drak chamber Movable platform Camera

Reflecting mirror

M.C. simulation on scintillator

25000 20000

Bellows

Neutron spatial resolution 13 µm

Main specifications:

- Magnification: 4X, 5X, 7.5X
- Working distance: 34mm, 44mm
- FOV: 1.7mm*1.7mm->

3.3mm*3.3mm

Optical resolution: $<4.4\mu m$

 1995 ± 18.6

262.2 ±0.8

94.96±0.94

956.8 ±12.4

4000

2076 +15.2

sigmal

sigma2

3000

10²

constant2

GOS transparent ceramic scintillator

(3) A novel energy resolved neutron imaging detector based on TPX3Cam

Principle diagram

TPX3Cam is a time stamping optical camera

10 12 14

Main specifications:

- Chip size: 14.1mm*14.1mm
- Magnification: 0.5-2.7
- Working distance: 60-345mm_(a)
- FOV:

5.2mm*5.2mm-28mm*28mm

(c)

Spatial resolution:
 40μm->220μm

(3) A novel energy resolved neutron imaging detector based on TPX3Cam

Neutron imaging of different samples

A quartz wrist watch and x-ray imaging

2-3Å Neutron imaging of different wavelengths

0-1Å

1-2Å

Neutron imaging of Bolt

X-ray imaging of Bolt

Flower imaging under different FOV

No.7 battery and neutron imaging

X-ray imaging of No.7 battery

Team introduction and development planning

2 Development of the neutron detectors

- ³He-based, Scintillator, GEM, imaging detector

Summary

- 4 instruments detectors passed the acceptances. This lays a good foundation for the detectors development in Phase II.
- Massive ³He tubes will be used for instruments. CSNS intends to produce various types of ³He tubes in China to satisfy the demand of Phase II.
- Scintillation detector with ⁶LiF/ZnS(Ag) is an economical alternative to ³He. The next is to improve neutron–gamma discrimination and the neutron detection efficiency.
- Ceramic GEM neutron detector shows good performances with high spatial resolution and high counting rate. However, the neutron detection efficiency still needs to be improved.
- For imaging detectors, the key is the ASIC chip with timing resolution.

Acknowledgments

核探测与核电子学国家重点实验室 State Key Laboratory of Particle Detection and Electronics

Thanks for your attention!