A Cylindrical Trigger Hodoscope System for the **COMET phase-l experiment**

Yuki Fujii for the COMET CTH group Monash University 13th April 2023, Melbourne

The muon-to-electron conversion

- One of the Charged Lepton Flavour Violation (CLFV) processes detectable if only the BSM exists
- Indirectly sensitive to the energy scale of new physics higher than 100 TeV **IDMET**rrent 90% C.L. upper limit is ¹⁰⁻¹³ @Au set by SINDRUM II

The COMET Experiment @J-PARC

Yuki Fujii, AFAD, April 2023

Cylindrical Detector (CyDet)

- Cylindrical Drift Chamber (CDC)
 - > ~5k sense wires for momentum measurement with 200
- Cylindrical Trigger Hodoscope (CTH)
 - ► Precise timing measurement (better than 1 ns) and gene

► Monash group is leading the detector development Yuki Fujii, AFAD, April 2023

1 ns) and gene elopment

105-MeV e background

Cylindrical Trigger Hodoscope

Yuki Fujii, AFAD, April 2023

Select the signal-like high momentum electrons while suppressing other low momentum/heavier particles

- Thick inner absorber + Four fold coincidence with two concentric layers
- Measure the electron arrival timing as precise as 1 ns
 - ► Use fast plastic scintillators (BC-408)
- Operational under the high radiation environment + 1 T magnetic field
 - I kGy gamma dose + 10¹² n/cm² neutrons

Fibre bundle + SiPM readout

	Performance	Ma
SiPM	$\star \star \star$	
PMT	$\star \star \star$	

- dose
- shielding box
 - silicon photomultipliers (SiPMs)
 - > Better accessibility to the sensors for easier maintenance/replacement

Yuki Fujii, AFAD, April 2023

> Having sensors inside the detector solenoid is quite difficult due to the high radiation

► Expected dose level is 1-2 orders lower outside the DS by introducing a thick neutron

> Photon extraction using optical fibres enables to use cheaper photo sensors such as

► Cons; Lower light yield due to the longer photon transferring → need the R&D

A Small Prototype

Yuki Fujii, AFAD, April 2023

Scintillator side

3D printed parts (Temporary)

- A small prototype to prove the performance and improve the final design
- ► A 1:1 scale plastic scintillators
- ► The baseline large area SiPM (Hamamatsu S14161-3050HS)

Light Yield

- trigger counter

 \blacktriangleright Measured peak voltage 180 mV, 1 p.e. peak = 4.2 mV \Rightarrow 42 p.e. for the minimum ionisation ► No strong position dependence was observed as expected

Yuki Fujii, AFAD, April 2023

> The light yield was measured with a small prototype using the Sr-90 checking source and the

Beam Tests @ Australian Synchrotron

Irradiation Tests

- ➤ SiPM system irradiated up to 10¹¹ neutrons/cm² w/ and w/o cooling
 - signal electrons
 - Cooling down to -35°C is mandatory to reduce the dark current due to the thermal electrons
- > Plastic Scintillator and plastic optical fibres irradiated up to 1 kGy gamma dose
 - ► Roughly 20% light yield drop is expected @1 kGy
 - > Photon transmittance + attenuation length degrade $\sim 10\%$

 \blacktriangleright Found that SiPM is operational up to 10¹⁰ neutrons/cm² assuming more than 25 photo electrons from the

480

7.8 7.9 8 8.1 8.2 8.3 8.4 8.5 7.8 7.9 8 8.1 8.2 8.3 8.4 8.4

SiPM Cooling System

- SiPM cooling system is being developed with Osaka and Kyushu Universities
- -40°C
- New prototype with 16 channels will be produced this year

Yuki Fujii, AFAD, April 2023

► A single channel cooling system achieved -36°C with a chiller and alcohol coolant at

Readout electronics

► We have developed both analog and digital electronics for CTH at Monash

Support Structure

Mid counter supports

Yuki Fujii, AFAD, April 2023

End counter support

Lead absorbers

Real Scale Prototype

- ► A first real scale fibre readout prototype was built and tested with a counter and Sr-90 at J-PARC in the last month
 - ► The data analysis is still ongoing

Many feedback to improve the construction procedure were found Yuki Fujii, AFAD, April 2023

Summary & Prospects

- > The COMET experiment aims to search for the μ -e conversion with upper limit sensitivities of 10⁻¹⁵ and 10⁻¹⁷ in Phase-I and Phase-II respectively
- Monash group is leading the prototyping and construction of the CTH detector system in COMET Phase-I
- Most of R&D items have been completed, and the prototype detectors satisfy our requirements (radiation hardness, timing and light yield)
 - Including the test beam measurement @Linac of Australian Synchrotron
- ► The detector construction will begin in this year 2023

CTH FEB – MB communication

Trigger data format from FEB to MB (tentative version)

► Send 3-bit hit status×24 (+parity bits) to COTTRI MB every 25 ns using MGT

Ch0	Ch1	Ch2	• • •	Ch23
data[2:0]	data[2:0]	data[2:0]	• • •	data[2:0]
data[2:0]	data[2:0]	data[2:0]	• • •	data[2:0]
data[2:0]	data[2:0]	data[2:0]	• • •	data[2:0]

Status[2:0]

Yuki Fujii, AFAD, April 2023

- Trigger timing resolution = 4.17 ns (240 MHz)
- ➡ Coincidence time window will be ± 4.17 ns for triggering
 Can separate pile-ups with a time gap farther than ~20 ns
- MB performs coincidence based on this hit information & send it to FC7

Trigger chain test

MyeongJae

Yuki Fujii, AFAD, April 2023

TDC implementation

- ► The basic algorithm almost same as RECBE
- ► Four 240 MHz clocks with different phases to realise 1.04 ns periodic 3-bit counters + hit-flag to be stored with 120 MHz clock
 - > Possible upgrade into 0.52 ns cycle by implementing four more phases if needed
 - ► Tested @Monash with the smallest setup

Yuki Fujii, AFAD, April 2023

TDC data

Yuki Fujii, AFAD, April 2023

COTTRI CTH Hardware Status

- ► All basic functionalities verified → Ready for the final production
- Almost all parts already secured to produce 13 additional FEBs
 - Start final production in April
- ► Two COTTRI CTH MBs already produced thanks to MyeongJae
 - ► Full chain trigger test to be expected in this year!

Yuki Fujii, AFAD, April 2023

