

PandaX-4T - A Multi-Tonne Liquid Xenon Detector for Dark Matter and Neutrino Physics

Xiangyi Cui (崔祥仪)

On behalf of the PandaX Collaboration

AFAD2023, Melbourne

Dark Matter Direct Detection

PandaX Collaboration

• China JinPing Underground Laboratory – CJPL

- Deepest (6800 m.w.e)
- Horizontal access

• Muon rate: 1 count/week/m²

Dual Phase Liquid Xenon TPC

- Purity liquid xenon target, high light & charge yield;
- Good ER/NR separation by S1&S2;
- 3D reconstruction reject external background;

PandaX-4T Overview

Cryogenics

Parameters	Heating load	Maximum	Filling/Recuperation	Outer
	(No purification)	Cooling Power	flow rate	Vacuum
Value	~50 W	~580 W	~1 ton/day	<2E-4 Pa

Purification system

NEXT

Ref. the maximum drift time $\sim 840 \ \mu s$

Low Outgassing

• High flow rate

Distillation System

Structured packing

- Distillation method for the LXe intrinsic background Kr&Rn removal;
- ~10⁶ reduction factor for Kr removal with 10 kg/h;
- Reversed operation mode working for Rn removal;

Distillation

			PandaX-4T	Upgraded
	Flow rate	Kr	10	30
	[kg/h]	Rn	56.5	856
	Reduction	Kr	106	108
3, [factor Nelbourne	Rn	2.2	4.4

TPC conditions

• PMT Arrays

NEXT

- R12699 2-inch PMTs with 4 independent anode readout;
- Better time response for better • waveform build;
- Lower radioactivity;

- 169 top + 199 bottom R11410-23 3-inch PMTs, with the average gain of 5.5×10^6 ;
- LED calibration every week;

		R11410	R12699
Time Response	Rise Time	5.5	1.2
[ns]	Transit Time	46	5.9
	Co-60	1.16 ± 0.72	0.00 ± 0.04
Radioactivity	Th-232	4.33±2.16	0.13 ± 0.17
[impd/pe]	U-238	26.29±16.90	0.00 ± 0.62
			< 13 >

Electronics

- V1725 Digitizer, 250 MS/s;
- Self-trigger mode: read out pulses above 20 ADC (~ 1/3 PE);

- Higher sampling rate;
- Accept out-trigger mode;

Calibration

Calibration source	Position	
^{83m} Kr/ ²²⁰ Rn	Injected from gas panel	
²⁴¹ Am-Be	Calibration tubes	
D-D neutron	Beam pipe	

Detector Response

- ER leak ratio (below NR median curve) is 0.43%±0.18%;
- Efficiencies separately determined from ER or NR calibration data are all consistent;

Background

Expected below-NR-median events: 9.8 (0.6) evts

- ER (Rn+Kr+Material+Tritium) background dominated in the selection region;
- Background per unit target is improved from PandaX-II by 4 times (<10 keV);

PandaX-4T first commissioning Result - WIMPs

- 1058 candidates (expected 1054±39), 6 below NR median curve (expected 9.8±0.6);
- Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c²);

PRL 127, 261802 (2021)

Neutrino Physics

Solar Neutrino – ⁸B

PRL 130, 021802 (2023)

Neutrino double beta decay – ¹³⁶Xe

AFAD2023, Melbourne

NEXT - PandaX-xT

AFAD2023, Melbourne

- PandaX-4T is one of the new generation multi-tonne xenon experiments (operation until 2025);
- Intense searches for various types of physics, including DMs and neutrinos;
- In parallel, the collaboration is developing the plan for the next generation experiment at CJPL;
- Highly welcome new collaborators!

谢谢!

