Development Status of Beam Diagnostics for Korea-4GSR-BIG and PLS-II

Asian Forum for Accelerators and Detectors 2023 April 13th, 2023

Garam Hahn On behalf of the Korea-4GSR Project Pohang Accelerator Laboratory, POSTECH

POHANG ACCELERATOR LABORATORY

Contents

- Brief Introduction to Korea-4GSR Project
 - Timelines, budget, governance & manpower
 - Representative beam parameters
 - Construction status
- Recent Development of Beam Diagnostics for Korea-4GSR and PLS-II
 - Overall beam diagnostics configuration
 - Online filling pattern & bunch length monitor
 - Beam loss monitor

Asian Forum for Accelerators and Detectors 2023 - April 13th, 2023

Light Sources in Korea (Project years)

PLS II (2009~2011) 3 GeV, 400 mA, 282 m Thermionic gun + Full energy linac

PAL-XFEL (2011~2015) 10 GeV, 60 Hz, 1.1km

> PAL-EUV (2019~2022) 400 MeV, 140 mA, 36 m 3 MeV photocathode +10 MeV linac + Booster

POHANG ACCELERATOR LABORATORY

4GSR Outline

Multipurpose Synchrotron Radiation Construction Project

- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m / Building: 69,400 m
- Location: Ochang, Chungcheongbuk-do

Specifications

- Beam Energy: 4 GeV
- Beam Emittance: less than 100 pm·rad (CDR: 58 pm·rad)
- Circumference: 800m
- Beamlines : more than 40
- Accelerator: Gun, Injector LINAC, 4 GeV Booster
- Lattice: MBA-7 Bend Achromat

<4GSR Project Budget Plan>

Years	2021	2022	2023	2024	2025	2026	2027	Sum
Machine	8	44	77	172	180	97	28	606
Site	72	72	-	-	-	-	-	144
Sum	80	116	77	172	180	97	28	750

POHANG ACCELERATOR LABORATORY

(Million USD)

POHANG ACCELERATOR LABORATORY

20	21	2022	2023	2024	2025	2026	
		Multi	purpose Synchro	otron Radiation	Construction Pro	oject	
CDR		TDR		A	ccelerator & Be	amlines	
		Site Construc	tion	Buildir	ng & Facility Cor	struction	

Project Governance

한국기초과학지원연구원KOREA BASIC SCIENCE INSTITUTE

Manpower

		2022	2023	2024	2025	2026	2027
	Director	1	1	1	1	1	1
	Vice Director	1	1	1	1	1	1
KDCI	Accelerator System	4	6	11	14	26	37
KDSI	Infrastructure & Facility	9	15	15	15	15	15
	Project Management	10	18	19	19	19	19
		24	40	46	49	61	72
	Accelerator	85	92	105	109	117	117
PAL	Beamlines	67	72	79	85	87	87
	Project Management	23	25	26	26	25	23
		175	189	210	220	229	227
	Total	200	230	257	270	291	300

Lattice Design

- The storage ring is a 800 m 4 GeV 28-cell ring with natural emittance of 62 pm
- The unit cell is a H7BA with 2-T center bend
- It exploits longitudinal gradient bends (LGBMs) and reverse bends (RBs)

to suppress emittance

Parameters	Value
Energy (GeV)	4
Circumference (m)	799.297
Emittance (pm)	62
Tunes (H,V)	68.10, 23.18
Natural chromaticity (H,V)	-110, -84.7
Chromaticity (corrected) (H,V)	4.5 , 3.5
Hor. Damping partition	1.84
Momentum compaction	$0.78 imes \mathbf{10^{-4}}$
Energy spread (σ_{δ})	$1.26 imes \mathbf{10^{-3}}$
Energy loss per turn (MeV)	1.098
Beam current (mA)	400
Bunch length (σ_z) (mm)	4.06 / 16.23
# of Beamline	24 (ID) 28 (2 T Bend)

С

Injection system

- Photo-cathod Gun & 200 MeV Linac
- Booster Ring : 2 Hz, 773 m, FODO
- Injection & Extraction

		\vee \vee	\vee	
E ST			-0.3 -0.4 -0.5	Rac
	773 m Booster	Value	Unit	
	Length	772.893	m	
	Electron Energy	0.2 - 4	GeV	
Design	Natural Emittance at 4 GeV	7717	pm rad	
ranameters	Natural Emittance at 200 MeV	19	pm rad	
	Momentum compaction	0.000925		
	Horizontal Tune	19.195	-	
	Vertical Tune	14.19	-	Rac
Tune and	Natural Horizontal Chromaticity	-27.7	-	ä
hromaticity	Natural Vertical Chromaticity	-19.3	-	
	Horizontal Chromaticity	3	(target)	
	Vertical Chromaticity	3	(target)	

Radiation relat quantities at 4 GeV

Radiation relat quantities at 200 MeV

	Energy Loss per Turn	1671.3	keV
	Energy Spread	0.107	%
	Horizontal Damping Time	8.4	ms
ted	Vertical Damping Time	12.3	ms
	Longitudinal Damping Time	8.1	ms
	Synchrotron Frequency	4217	Hz
	Synchrotron Tune	0.01087	
	Bunch Length	11.17	mm
	Energy Loss per Turn	0	keV
	Energy Spread	0.005	%
	Horizontal Damping Time	67044	ms
ted	Vertical Damping Time	98724	ms
1	Longitudinal Damping Time	64632	ms
	Synchrotron Frequency	20682	Hz
	Synchrotron Tune	0.053	
	Bunch Length	0.11	mm

Construction Site

POHANG ACCELERATOR LABORATORY

4GSR Design – Building Design Company (Haenglim*)

Korea Photon Light Source

계획의 전제

과학기술 기초역량 강화를 위한 세계 최고 수준의 차세대 다목적 방사광 가속기 구축, 선도적 원천기술 및 미래핵심기술 획보를 위한 R&D 과학기술 인프라의 요람 차세대 첨단기술의 집약적 활용으로 국가 기술경쟁력 강화에 기여

* Designed PAL-XFEL

Asian Forum for Accelerators and Detectors 2023 - April 13th, 2023

The Project Introduction Summary

Multipurpose Synchrotron Radiation Project

- The project aims to build 4 GeV storage ring with an emittance less than 100 pm
- Its circumference will be 800m
- It can host more than 40 beamlines. Initially, 10 beamlines will be ready.

2 Institutions working together

- KBSI: Leading institution in charge of Building and Facility
- PAL: Partner institution in charge of Accelerator and Beamlines

Construction will be completed by 2027

- Building design began in September, 2022 and will be completed by 2023
- TDR will be finished by 2023
- Construction will be started in spring, 2024

Configuration of Beam Diagnostic Device for the Korea-4GSR Project

CODE	Turne			Number of Devices			
CODE	Туре	Measurement	LINAC	LTB	BS	BTS	MR
1	Beam Position Monitor (BTN/STRL)	Position	8	5	77	6	292
2	Beam Profile Monitor (YAG/OTR)	2D Profile, Emittance, Energy	7	6	1	7	1
3	Soft-X-ray Diagnostic Beamline	SR Beam Size, Emittance					1
4	Visible Light Diagnostic Beamline	SR Beam Size, Emit., Bunch			1		2
6	AC Current Transformer (ICT/FCT)	Beam Current	3	1	1	1	1
7	DC Current Transformer (CWCT)	Beam Current			1		2
8	Bunch Filling Pattern Monitor	Filling Pattern Monitor					1
9	Streak Camera	Bunch Profile, Pattern					1
10	Photon Beam Position Monitor	Photon Beam Position					30
11	Beam Loss Monitor(FAST-PMT)	Beam Loss (sensitive, BbB)			5		30
12	Beam Loss Monitor(SLOW-Scintillating Fiber)	Beam loss (position)	1	1	4	1	8
13	Energy Monitor	Beam Energy (spin)			1		1
14	Tune Monitor	Tune			1		1
15	TFS/LFS	Feedback					2
16	Vibration Monitors	Mechanical Vibration					56
17	Calibration & Meas. Tools	Cal. Stage, Elec. Dev. Tool					1
	Total Number of Instruments p	ber Section	19	13	92	15	430

12-Apr-2023

Task Priority & Development Status

- RF pick-up : Background study > simulation > prototyping > test > design upgrade > mass production > inspection > assembly > installation 1.
- Beam Loss Monitor (SLOW) > prototyping > beam test at PLS-II > upgrade > mass production 2.
- BPM Electronics : study > **prototyping** > debugging > mass production (BBB-TFS/LFS, Bunch resolved energy measurement in injector LINAC) 3.
- Strip-line BPM > allocation/drawing > simulation design > fabrication > installation 4.
- BPRM-CT-SLIT > design study > fabrication (YAG/GaGG/OTR-SLIT All In One Chamber, Inj-Scr-Mon) 5.
- Tune Monitor : 6. Analog Method (Spectrum Viewer & FM source + Tune Kicker (TFS hybrid)) : Kicker : design > manufacturing Digital Method (with TFS) : design study > prototyping > manufacturing
- TFS/LFS : build in 2nd phase 7. Tr. kicker, Ln. damped cavity : design study > prototyping > manufacturing
- Streak Camera : ready for purchasing > purchasing (y2025) 8.
- 9. Filling pattern monitor : prototyping > **beam test at PLS-II**
- CT (DCCT/FCT/ICT) : **specification study** > wake-field-shield manufacturing > test 10.
- High Precision Energy Monitor : study > machine study > algorithm implementation to Digital Tune Monitor system 13.
- 14. Diagnostic Beamlines & Hutches : design study

Apr. 2nd, 2022

Bunch by Bunch Fill Pattern & Bunch Length Monitor

Measurement of Longitudinal Beam Properties

- Hybrid filling patterning for a time resolved experiment in PLS-II
 - 330 bunches + gap + single bunch + gap
- Longitudinal beam instabilities in Korea-4GSR
 - Ln. wake impedance mainly induced by NC cavities
- Measurement method candidates
 - Streak Camera
 - Less than 1 ps temporal resolution
 - Difficult to measure in an online and a continuous way
 - BPM sum value or FCT
 - An on-line & TbT measurement
 - Filling pattern monitoring only
 - Photodiode
 - The temporal resolution of 1.2 ~ 3 ps
 - Online BbB <u>bunch length, phase, & filling pattern</u> measurement at the same time (AS people had already shown online filling pattern meas. using PD)

PLS-II Parameter	Value	Unit
Beam Energy	3	GeV
Beam Current	400	mA
Circumference	281.82	m
RF Frequency	499.97	MHz
RMS Bunch Length	6.4	mm

Experimental Setup

garam@postech.ac.kr

Frequency Response for Each Device

12-Apr-2023

Frequency Response Compensation vs Gaussian Deconvolution

12-Apr-2023

for B]

$$r \rightarrow \sigma_y^2 = \sigma_x^2 + \sigma_h^2 \rightarrow done$$

$$) * h(t) = \int x(\tau)h(t-\tau)d\tau$$

response function
$$h_{PD} * h_{bias T} * h_{amp} * \cdots$$

$$\sigma_x^2 + \sigma_h^2$$

Frequency Response Compensation vs Gaussian Deconvolution

garam@postech.ac.kr

Cheap & Easy-to-Make Beam Loss Monitor Development

Cheap & Easy-to-Make Beam Loss Monitor Development

- 100 Sample/sec/ch x 32ch of BLM was developed by using scintillation fibers and CMOS camera ullet
- Possible to detect beam loss location with a millisecond-level temporal resolution ullet
- The main idea originated from PSI; IBIC2021, C. Ozkan Loch et al., "CMOS BASED BEAM LOSS MONITOR AT THE SLS" •

Detector Hardware

• Fibers

1. Scintillating fiber

	Kurary (SCSF-78)	Saint-gobain (BCF-12)
Diameter [mm]	1	1
Min. Bending Dia. [mm]	~ 80	~ 100
Emission peak [nm]	450	435
Decay time [ns]	2.8	3.2
# of Photons per MeV*	High	~ 8000

* Only saint-gobain quotes the light yield.

** As both companies only offer raw fiber, the use of a fiber installation box is necessary.

2. Optical fiber

- 1 mmD optical fiber was used
- black-jacketed optical fiber for blocking external light
 - \rightarrow only one company's product is available (TORAY)

Monitoring Screen

Fiber holder (left) and polished cross-section of array-side (right)

- Fiber holder
 - 5 x 5 array for multi-channel analysis
 - FC connector part is polished using dedicated polishing tools
 - Some damage on fiber of 5 x 5 array component due to a careless polishing by hand

12-Apr-2023

Combination of Read-out & Processing Modules

1. Camera

- 2. Fiber holder + lens
- 3. Raspberry Pi 4
- **4. Fiber/LED Connectors**

Reference paper: Ozkan Loch, C., Ischebeck, R., & Stampfli, A. (2021). CMOS Based Beam Loss Monitor at the SLS. Proceedings of the 10th International Beam Instrumentation Conference, IBIC2021, Rep. of Korea. https://doi.org/10.18429/JACOW-IBIC2021-TUOB02

garam@postech.ac.kr

Electronics & Control Platforms

Camera ullet

Model	Basler acA720-520um
Interface	USB 3.0
Sensor	IMX287 CMOS (1/2.9")
Sensor Resolution	720 px x 540 px
Max. Frame Rate*	525 fps
Pixel Bit Depth*	8/12 bits
QE	~ 60 % at ~ 450 nm

Control

- Processor •
 - Raspberry Pi 4

DAQ layout

Test results

- Beam loss was well measured every 10 min. when the top-up injection ullet
- We will install this BLM to overall our accelerator facility soon
 - Three read-out modules and about 100 detectors

Beam loss signal when an electron beam is injected

12-Apr-2023

Holder type

Summary

- Since late 2021, Korea-4GSR Project (diffraction limited storage ring construction project) has been conducted by • two institutions with 750M USD
 - KBSI (Korea Basic Science Institute) for facility construction
 - PAL for the accelerator and beamline construction •
 - The energy of 4 GeV, circumference of 800 m, and natural emittance of 61 pm •
- Two types of beam diagnostic devices were recently developed and tested
 - We have experimentally demonstrated an online bunch-by-bunch diagnostics that enables filling pattern (~ 3 μA resolution) and **bunch length** (~ 1 ps resolution) monitoring with visible light at the PLS-II storage ring
 - A cheap and easy-to-make beam loss monitor (100 sample/sec/ch x 32 ch) was quickly developed, installed, and worked • well.

Thank you for your attention

 \diamond

Backup slides

Beam Position Monitoring

- Two types were designed & Ready for prototyping
 - A : Borosilicate Glass, B : Alumina Ceramic
- Max. temperature rising and trap modes were evaluated and optimized by 3D FEM simulations.

Power dissipation Per button	Type (PETRA & VESS
54ps	< 0.1

Special Case (w/o harmonic cavity): Type A 1.5 Watt, Type B 0.5 Watt

garam@postech.ac.kr

BPM Electronics Development

- 1 GS/s, 14-bit ADC, Time domain BPM electronics development is on-going
 - Simple read-out module >> BbB analyzing module >> TFS/LFS module

Cabor

Apr. 2nd, 2022

4channel ADC Module X 4 slot

Schematic Diagram of Functionality

BPRM

- The same technology used in PLS-II will be adopted
 - Position calibration method with +-50 um resolution •
 - Image processing code & control service code •
- New technique will be developed
 - OTR : silver coated wafer
 - Vacuum chamber : multi-purpose identical chamber
- Locations •
 - Many units will be installed in LINAC, LTB, BTS for beam matching ٠
 - One or two units will be installed BR, SR for first-turn measurement •

$$(x,y)\mapsto (u,v)=igg(rac{ax-b}{gx+b}$$

Diagnostic Beamlines (Beam Size, Emittance, Bunch Length, Fill-pattern)

Beamlines and hutches

- Located on the rooftop of the tunnel
- The number of mirrors will be minimized to reduce wavefront error \rightarrow for accurate beam size & emittance measurement
- Use of visible light for easy build and maintenance

Light sources

- [SR1A-E, SR15A-E, BR1] Beam size, emittance, mechanical vibration by using a visible light Interferometer
 - right after the long straight section
 - BR1 : Bending magnet (booster synchrotron)
- [SR15B, BR1] Online bunch length & fill-pattern, longitudinal beam instability by using a fast photo-diode
 - Beam instability by using Streak Camera
 - SR15B: Center-bend (main synchrotron)
 - BR1: Bending magnet (booster synchrotron), if needed

Apr. 2nd, 2022

SR1A-E, SR15A-E: Bending magnet (LGB, 0.7 T): almost dispersion free,

Online BbB Bunch Length Monitor

- Prototype finished. Currently operated in PLS-II. First upgrade is planned in 2023, for fast processing This will be used for Korea-4GSR
- Online monitoring of Bunch length (BbB), Longitudinal instability (in phase) & Filling pattern

300

400

36/20

Photon Beam Position Monitor

- Diamond Blades (Hard X-ray) •
 - Development completed (Installed in PLS-II, since 2020)
 - Available to scan full range photon beam (low heat depo.)
 - R/O module : Libera-photon current integrator
 - Impossible to remove a contamination photon generated by up/down-stream bending magnet, that is moving by SOFB

- Gas chamber (Soft X-ray)
 - In progress, build-up simulation process, and design optimization
 - Almost no contamination effect
 - Both center of charge and profile can be measured

12-Apr-2023

