
Simulations and design of a compact beamline at the University
of Melbourne X-lab

Scott Williams

University of Melbourne

October 17, 2022

1/30



Collaborators

Scott David Williams a†, Geoffrey N. Taylora, Matteo Volpia, Rohan Dowdb ,
aSchool of Physics, The University of Melbourne, Melbourne, Victoria 3010, Australia
bAustralian Synchrotron - ANSTO (AS - ANSTO), Clayton, Victoria, Australia
† Presenting

2/30



University of Melbourne X-lab
I The University of Melbourne X-lab is a new facility based at the University of

Melbourne planning to condition and conduct research into X-band accelerating
structures

I Made possible with the generous assistance of CERN and their offer of part of
their surplus X-band (11.9942 GHz) test station infrastructure. This includes RF
modulators, RF accelerating cavities, klystrons, and other associated
infrastructure.

I The lab refurbishment is complete and this infrastructure is being installed and
commissioned as we speak.

I For further information on the physical setup, please see the talk by M. Volpi The
southern hemisphere’s first X-band radio-frequency test facility at the University
of Melbourne.” at 2022-10-18 1220 (Tuesday).

I One of the long term goals of the group is to design and install a compact low
emittance beamline based around high gradient X-band linear accelerating
structures.
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University of Melbourne X-lab - From CERN

Figure 1: From in place at CERN
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University of Melbourne X-lab - To Melbourne

Figure 2: To ready to unpack at the University of Melbourne
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University of Melbourne X-lab - To installation

Figure 3: Installation and commissioning at the University of Melbourne
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University of Melbourne X-lab - Future beamline hall

Figure 4: Beamline hall
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University of Melbourne X-lab - Layout
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Figure 5: A simplified beamline layout, and some of the associated infrastructure we’d like to
include
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The proposed beamline

I We’re currently in the process of creating the conceptual design report for a
beamline in the hall

I Potential use cases include radiation dosimetry or a potential Inverse Compton
Scattering (ICS) light source.

I The conventional approach would be to use an RF photogun, but for
commissioning we will investigate the use of a DC photogun with additional
bunching section.
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The proposed beamline

Electron source A 100 keV DC photogun with an additional S-band buncher
I Originally the plan was to use an S-band RF photogun, but due to

changed circumstances we will use this configuration for initial
commissioning.

I The buncher not only compresses the beam, but also adds a small
energy boost for acceptance into the X-band structures.

I The buncher investigated will be similar to and based on those at
the Australian Synchrotron.

Main acclerating section Two high gradient X-band accelerating structures operating
an expected average gradient around 70 MV m−1

A quadrupole focusing array Used to focus the beam after the initial accelerating
section

User area A section for user experiments or ICS
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The simulation pipeline
I Buncher fieldmap, accelerating structure fieldmaps

I Buncher recreated from scale drawings, simulated in CST Studio
I X-band structures simulated in CST Studio from original drawings/step files

I Initial particle tracking through accelerating stages performed in Astra, Opal-T
used for cross check
I Full 3D space charge simulation

I Tracking through quadrupole array performed using ’Elegant’
I Optimisation of quadrupole array parameters using the Scipy differential evolution

method, due to convergence issues with the ’Elegant’ simplex method
I ICS simulations performed using ’CAIN’

I Electron/Photon scattering code developed by Yokoya K.
I Unsupported for many years

I Other optimisation, pipelining and automation code written in Python utilising
the libraries Jinja2, numpy, scipy.
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Beamline specifications

Some quick specifications for the simulations we’ll be presenting
I 100 keV DC photogun, TW S-band buncher stage with average gradient of

7 MV/metre and length of 120 mm, two TW X-band RF accelerating structures
with an average gradient of 70 MV m−1 and length of 250 mm

I Initial Gaussian laser spot size of 250 µm cut off at twoσ and pulse duration of
100 fs

I 1 pC bunch charge used for initial simulations, though this can be increased
I Final bunch energy of approximately 27 MeV, with transverse emittance of

0.5π mrad mm.
I Repitition rate of X-band infrastructure is 400 Hz
I Length of beamline must be less than 8 m
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Beamline acceleration stage
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Beamline acceleration stage - acceleration and momenta
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Figure 6: Accelerating gradients and partice momenta
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Beamline acceleration stage - RMS size and emittance
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Figure 7: RMS size of bunch during the
acceleration stage
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Figure 8: Emittance (normalised) of the bunch
during the acceleration stage
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Focusing section
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Focusing section

I Using ’Elegant’, our approach is to find a configuration(s) of quadrupole strengths
that minimise the transverse size of the bunch at some position. We’ll then use
this/these configuration(s) to inform a mechanical specification later.

I Simplex optimiser in ’Elegant’ is unsuitable for this, due to large space to sample
and small sampling frequency required

I Instead, we the Scipy implementation of the differential evolution optimisation
method to minimise the transverse beam size at a given distance from the array.

I We use some Python code to wrap up the process of generating new input files
(via Jinja2), running each simulation, and return the RMS size at the focus as a
float. Calls to the standard multiprocessing library also allow us to parallelise this
across multiple CPU cores.
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Focusing section

Z(m), along focusing section
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Figure 9: Transverse beam RMS size through focusing array
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ICS section
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ICS simulations

I Overall design conceptual at this stage; no long commitments made towards laser
I For these photon production simulations we consider a laser similar to that used

by the ThomX project to establish an optimistic estimate of the photons that
could be produced.

I Used as a performance characteristic so that we can evalute the tradeoffs of
different designs; eg. the tradeoff between a tight focus (for enhanced photon
production) versus a less divergent beam
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ICS simulations - photon production vs transverse bunch size at focus
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Figure 10: Photon production versus transverse
bunch size at IP
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Figure 11: σx of photons at screen 1m away

For various beam sizes we can evaluate photon production rates, and look at how this
may affect spot size of produced X-rays at a screen 1 m away
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Beamline alternatives

We’re also considering some other variations of the beamline
I Three quadrupoles instead of four.
I Instead of the S-band buncher, consider an X-band buncher or low β accepting

X-band structure.
I S-band or X-band RF photoguns.
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Conclusion

I Beamline simulation progressing to final stages
I Still to optimise for final ICS photon production
I Some alternative layouts being evaluated
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Fin
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Backup
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Backup - Stability
Monte-Carlo estimate of transverse beam size for 1% error in magnet strength values.
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Figure 12: Distribution of size at focus
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Figure 13: Distribution of σx , σy at focus

26/30



Backup - Stability
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Backup - Simulation convergence, fixed IP parameters
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Figure 15:
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Figure 16:

By fixing one parameter we hurry along the optimiser significantly. Spends slightly less
time wandering around, at least for magnet strengths, still a bit of wandering with
drifts.
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Backup - Simulation convergence, fixed IP parameters
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Figure 18:

For a bunch of optimised configurations, I’ve plotted RMS size development. Can see a
couple of repeated configs.
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Backup - Other beamline stats

I Total length of beamline presented here: 3.5 m. Doesn’t include diagnostics or
beam dump.

I Quadrupole strength k: k = e
cp

∂By
∂x = e

cp
∂Bx
∂y
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