User Meeting 2022

Contribution ID : 7

Type : Poster

The progression of MIST: Multimodal Intrinsic Speckle-Tracking

Speckle-based phase-contrast X-ray imaging (SB-PCXI) is capable of reconstructing sample information below the imaging system's spatial resolution. Since its realisation in 2012 [1,2], there has been significant development in the experimental implementation and theoretical formalism of SB-PCXI. We have been investigating how the concept of "local energy conservation" can be used to reconstruct various signals from a sample- an approach termed Multimodal Intrinsic Speckle-Tracking (MIST). MIST combines the Fokker-Planck description of paraxial X-ray propagation [3] with a geometric-flow formalism for speckle-tracking [4] to consider both coherent and diffusive effects. We have developed several approaches in the quest to solve the SB-PCXI inverse problem [5-8]. This involves reconstructing quantitative and qualitative sample information from detector-measured intensity SB-PCXI data. Initial attempts to solve this inverse problem considered only the coherent channel of energy-flow, from which an algorithm to reconstruct a sample's projected-thickness was derived [5]. We currently present an algorithm capable of reconstructing the directional diffusive scattering signal from unresolved-microstructure [8]. This presentation will focus on the development of MIST, future research directions, as well as the wider application of SB-PCXI as a viable imaging technique.

[1] Bérujon, S. et al. Phys. Rev. Lett. 108(15), 158102 (2012).

- [2] Morgan, K.S. et al. Appl. Phys. Lett. 100(12), 124102 (2012).
- [3] Paganin, D.M. et al. Sci. Rep. 9(1), 17537 (2019).

[4] Paganin, D.M. et al. Phys. Rev. A, 98(5), 053813 (2018).

- [5] Pavlov, K.M. et al. Phys. Rev. Appl. 13(5), 054023 (2020).
- [6] Pavlov, K.M. et al. J. Opt. 22(12), 125604 (2020).
- [7] Alloo, S.J. et al. J. Med. Imaging 9(3), 031502 (2022)
- [8] Pavlov, K.M. et al. Phys. Rev. A, 104(5), 053505 (2021).

Level of Expertise

Student

Presenter Gender

Woman

Pronouns

She/Her

Do you intend to attend UM2022

In person - Melbourne

Students Only - if available would you be interested in student travel funding

Students Only - Do you wish to take part in the Student Poster Slam

No

Terms and conditions (Please confirm that you have read all the requirements and agree to the conditions)

Yes

Primary author(s) : ALLOO, Samantha (School of Physical and Chemical Sciences, University of Canterbury, New Zealand)

Co-author(s) : PAGANIN, David (School of Physics and Astronomy, Monash University); MORGAN, Kaye (Monash University); Dr PAVLOV, Konstantin (School of Physical and Chemical Sciences, University of Canterbury, New Zealand)

Presenter(s) : ALLOO, Samantha (School of Physical and Chemical Sciences, University of Canterbury, New Zealand)

Session Classification : Poster

Track Classification : Manufacturing, Engineering & Cultural Heritage

Yes