

Contribution ID : 61 Type : Poster

Understand the gallium substitution limitations of YBaCo4-xGaxO7

The 114-compound material of YBaCo₄O₇ is a mixed cobalt valence system that exists in a hexagonal arrangement (space group P 6₃mc), which exhibits interesting physical properties such as magnetism and oxygenation absorption. Cobalt tetrahedra in the 6c position are in a Kagome arrangement which is the source of the magnetic frustration seen in this system. The Co 2a position, located in the triangular layer, involves long-range magnetic ordering at lower temperatures. As both positions (2a and 6c) show a mixture of Co^{2+} and Co^{3+} , the chemical substitution of a particular ion could be achieved. Would this substitution occur in both layers or exclude the Kagome layer? Here we explored the removal of Co^{3+} for Ga^{3+} for the potential formation an isolated magnetically frustrated layered system formed by only Co^{2+} . The synthesis and characterisation of YBaCo_{4-x}Ga_xO₇ attempted for x = 0 - 1.0 with the structural phase mixtures resolved using powder lab sourced, synchrotron sourced and neutron diffraction techniques.

Level of Expertise

Student

Presenter Gender

Man

Pronouns

He/Him

Do you intend to attend UM2022

Unsure at this stage

Students Only - if available would you be interested in student travel funding

Students Only - Do you wish to take part in the Student Poster Slam

Terms and conditions (Please confirm that you have read all the requirements and agree to the conditions)

Primary author(s): CHRISTOPHER, Timothy (University of Auckland); CALLAGHAN, Thomas (Honours Student University of Auckland); SOEHNEL, Tilo (The University of Auckland)

 $Presenter(s): \quad \text{CHRISTOPHER, Timothy (University of Auckland)}; \quad \text{CALLAGHAN, Thomas (Honours Student Presenter(s))} \\$

University of Auckland)

Session Classification: Poster

Track Classification: Advanced Materials & Hard Matter