
PvaPy: Python API for EPICS PV Access

Siniša Veseli
Scientific Software Engineering & Data Management

Advanced Photon Source

EPICS Meeting

October 2015

EPICS Meeting - October 2015

About PvaPy

 Python API for PV Access

 Hosted on GitHub: https://github.com/epics-base/pvaPy

 Part of the v4 release: http://sourceforge.net/projects/epics-
pvdata/files

 Simple to build and use: one should be able to get started in
minutes

 Uses Boost.Python framework to wrap PV Access C++ libraries:

- Enables one to leverage existing functionality and reduce
implementation effort

- Simplifies maintenance: future improvements in C++
infrastructure should benefit python PVA API

 Python look and feel: easy conversion between python objects
(dictionaries, lists, etc.) and PV structures

2

EPICS Meeting - October 2015

About PvaPy

 Features

- Standard EPICS build, enhanced with automated
configuration

- Support for all PV data types (scalars, structures, unions)

- Support for setting and retrieving channel values

- Channel monitoring support

- RPC Client/Service support

- Initial NT object support

- Standard Python module documentation

 Goal: provide full PV Access functionality, anything that can be
done via C++ APIs should also be doable with PvaPy

3

EPICS Meeting - October 2015

Build

1) Configure build.

$ make configure EPICS_BASE=<epics_base>

EPICS4_DIR=<epics4_dir>

Automated configuration
generates ﻿configure/RELEASE.local and
configure/CONFIG_SITE.local files. It also creates
environment setup files.

2) Compile sources.

$ make

Build process ﻿creates and installs a loadable library named
pvaccess.so under the lib/python directory which
can be imported directly by Python.

4

EPICS Meeting - October 2015

Basic Usage

 Before using PvaPy, either source setup file, or modify
$PYTHONPATH manually

 Setup file (bash): source
$PVAPY_DIR/bin/$EPICS_HOST_ARCH/setup.sh

 Manual setup (bash): export
PYTHONPATH=$PVAPY_DIR/lib/python/$PYTHON_V

ERSION/$EPICS_HOST_ARCH:$PYTHONPATH

 Python module is called “pvaccess”
$ python -c "import pvaccess; print

dir(pvaccess)”

EPICS Meeting - October 2015

5

PvObject Class

  Base class for all python PVA objects is PvObject (a generic PV structure)

 It is initialized with a dictionary of introspection data: key is the field name
string, value is one of:

- PVTYPE: a scalar type, any of BOOLEAN, BYTE, UBYTE, SHORT, USHORT,
INT, UINT, LONG, ULONG, FLOAT, DOUBLE, or STRING

- [PVTYPE]: a single element list, representing a scalar array

- {key:value,…}: a dictionary, representing a structure

- [{key:value,…}]: a single element list containing a dictionary,
representing a structure array

- (): an empty tuple, representing variant union

- [()]: a single element list containing an empty tuple, representing
variant union array

- ({key:value,…},): a single element tuple holding a dictionary,
representing a restricted union

- [({key:value,…},)]: a single element list containing a single element
tuple of a dictionary, representing a restricted union array

EPICS Meeting - October 2015

6

PvObject: Simple Structure Example

>>> pv = PvObject({'i' : INT, 's' : STRING})

>>> print pv

structure

 int i 0

 string s

>>> # Can set entire object with key/value dictionary

>>> pv.set({'i' : 12, 's' : 'abcd'})

>>> print pv

structure

 int i 12

 string s abcd

>>> # Can use getters/setters for each field

>>> pv.getString('s')

'abcd'

>>> pv.setString('s', 'xyz')

>>> pv.getString('s')

'xyz'

EPICS Meeting - October 2015
 7

PvObject: Complex Structure Example

 >>> pv = PvObject({'i': INT, 'slist' : [STRING], 'dict' : {'b' :
BOOLEAN, 'dict2' : {'d' : DOUBLE}, 'flist' : [FLOAT]}})

>>> print pv

structure

 int i 0

 string[] slist []

 structure dict

 boolean b 0

 float[] flist []

 structure dict2

 double d 0

>>> # Can use incomplete dictionaries to set fields

>>> pv.set({'i' : 15, 'dict' : {'flist' : [1.1, 2.2, 3.3]}})

>>> print pv

structure

 int i 15

 string[] slist []

 structure dict

 boolean b 0

 float[] flist [1.1,2.2,3.3]

 structure dict2

 double d 0

EPICS Meeting - October 2015

8

PvObject: Conversion to Dictionary

>>> # Conversion to dictionary: use either get() or toDict()

>>> pv.get()

{'i': 15, 'slist': [], 'dict': {'b': False, 'dict2': {'d':

0.0}, 'flist': [1.100000023841858, 2.200000047683716,

3.299999952316284]}}

>>> # Get structure field

>>> pv.getStructure('dict')

{'b': False, 'dict2': {'d': 0.0}, 'flist':

[1.100000023841858, 2.200000047683716, 3.299999952316284]}

>>> # Get introspection dictionary

>>> pv.getStructureDict()

{'i': pvaccess.PvType.INT, 'slist':

[pvaccess.PvType.STRING], 'dict': {'b':

pvaccess.PvType.BOOLEAN, 'dict2': {'d':

pvaccess.PvType.DOUBLE}, 'flist': [pvaccess.PvType.FLOAT]}}

EPICS Meeting - October 2015

9

PvObject: Union Support

 >>> # Union support
>>> pv = PvObject({'v' : (), 'u' : ({'i': INT, 'd' :

DOUBLE},)})

>>> print pv

structure

 union u

 (none)

 any v

 (none)

>>> # Set variant union

>>> s = PvObject({'s' : STRING})

>>> s.setString('xyz')

>>> pv.setUnion('v', s)

>>> print pv

structure

 union u

 (none)

 any v

 string s xyz

EPICS Meeting - October 2015

10

PvObject: Union Support

>>> # Select restricted union field

>>> u = pv.selectUnionField('u', 'i')

>>> pv.getSelectedUnionFieldName('u')

'i'

>>> # Set restricted union field

>>> u.setInt(3)

>>> print u

structure

 int i 3

>>> print pv

structure

 union u

 int i 3

 any v

 string s xyz

EPICS Meeting - October 2015

11

Channel Class

 Provides interface for communicating with PV Access channels

 Support for channel monitoring

 Support for Channel Access (the EPICS Version 3 protocol).

 Channel’s “get()” method returns a PvObject representing the
current value for the given process variable

 Channel’s “put()” method accepts either a PvObject, or a
standard Python data type as input for setting the process
variable

EPICS Meeting - October 2015
 12

Channel Class Example

>>> # In addition to PvObjects, we allow standard

>>> # python types to be used for channel puts

>>> c = Channel('bigstring01’)

>>> c.put('My String')

>>> print c.get()

epics:nt/NTScalar:1.0

 string value My String

>>> c = Channel('intArray01’)

>>> c.put([1,2,3,4,5])

>>> print c.get()

structure

 int[] value [1,2,3,4,5]

EPICS Meeting - October 2015
 13

Channel Monitor Example

 Define function to be called when PV value changes, subscribe to the
channel, and start monitor

>>> def sumMonitor(pv):

... s = 0

... for i in pv.get()['value']:

... s += i

... print s

>>> c = Channel('intArray01')

>>> c.subscribe('sum', sumMonitor)

>>> c.startMonitor()

EPICS Meeting - October 2015
 14

RPC Server

RpcServer class is used for hosting one or more PVA Remote
Procedure Call (RPC) services

Users define an RPC processing function and register it with an
RpcServer instance

The RPC processing function takes a client’s request PvObject
as input, and returns a PvObject that contains the processing
result

>>> def sum(pvRequest):

>>> a = pvRequest.getInt('a')

>>> b = pvRequest.getInt('b')

>>> return PvInt(a+b)

>>> srv = RpcServer()

>>> srv.registerService('sum',sum)

>>> srv.listen()

EPICS Meeting - October 2015
 15

RPC Client

RpcClient is a client class for PVA RPC services

Users initialize an RpcClient object giving the service’s channel
name, prepare a PV request object, and then invoke the service

>>> c = RpcClient('sum')

>>> request = PvObject({'a':INT,'b':INT})

>>> request.set({'a':1,'b':2})

>>> sum = c.invoke(request)

EPICS Meeting - October 2015
 16

Documentation

 Generating HTML docs at build
time:

 $ make doc

 PvaPy uses Sphinx framework

17

EPICS Meeting - October 2015

 Documentation generated during automated builds:
http://epics-
pvdata.sourceforge.net/docbuild/pvaPy/tip/pvaccess.html

Future Work

 Complete support for all Normative Types

 Support for “putGet()” and “getPut()” operations

 Support for Python 3

 Support for NumPy arrays

 Channel monitor enhancements

 Test suite development

 PVA Server implementation

18

EPICS Meeting - October 2015

Summary

PvaPy is the EPICS4 Python API for PV Access.

Its interfaces have been designed with the end user in mind: to
be as simple, flexible and intuitive as possible, while still
retaining all capabilities and features provided by the PVA
protocol.

Give it a try, all comments and suggestions are welcome!

ICALEPCS Poster Session: WEPGF116, 21 Oct 2015, 17:15-18:15

19

EPICS Meeting - October 2015

Acknowledgements

 A.N. Johnson worked on ensuring that PvaPy’s build conforms

to EPICS standards

 M. Kraimer and M. Davidsaver worked on prototyping support
for PV unions

 M. Kraimer developed pvaClientCPP package

 K. Vodopivec provided early feedback and suggestions

 R. Lange and D. Hickin worked on automated builds and
preparing software releases

 N.D. Arnold and the entire EPICS 4 working group provided
support and encouragements for PvaPy development

20

EPICS Meeting - October 2015

21

Additional Slides

EPICS Meeting - October 2015

Derived Object Classes

  Each scalar type has its own class: PvBoolean, PvByte, …, PvString

 All scalar classes can be initialized using scalar value, and have setters/getters

>>> s = PvString('abc')

>>> print s

abc

>>> d = PvDouble(123.456)

>>> print d

123.456

>>> l = PvLong(123456789012345678L)

>>> print l

123456789012345678

>>> l.get()

123456789012345678L

>>> l.set(13L)

>>> l.get()

13L

EPICS Meeting - October 2015

22

Derived Object Classes

 Scalar array type class: PvScalarArray

 It is initialized using scalar type, has setter/getter

>>> array = PvScalarArray(INT)

>>> print array

structure

 int[] value []

>>> array.set([1,2,3,4,5])

>>> print array

structure

 int[] value [1,2,3,4,5]

EPICS Meeting - October 2015
 23

NT Table Example

 Initialize table with number of columns and column type

>>> from pvaccess import *

>>> ntTable = NtTable(3, DOUBLE)

>>> ntTable.setLabels(['Col1', 'Col2', 'Col3'])

>>> ntTable.setColumn(0, [0.1, 1.1, 2.2])

>>> ntTable.setColumn(1, [1.1, 2.2, 3.3])

>>> ntTable.setColumn(2, [2.1, 3.3, 4.4])

 Initialize table with list of column types
>>> ntTable = NtTable([STRING, INT, DOUBLE])

>>> ntTable.setLabels(['String', 'Int', 'Double'])

>>> ntTable.setColumn(0, ['row0', 'row1', 'row2'])

>>> ntTable.setColumn(1, [1, 2, 3])

>>> ntTable.setColumn(2, [2.1, 3.3, 4.4])

>>> ntTable.setDescriptor("Nice Table, Bad Results")

>>> timeStamp = PvTimeStamp(12345678L, 12)

>>> ntTable.setTimeStamp(timeStamp)

>>> alarm = PvAlarm(11, 126, "Server SegFault")

>>> ntTable.setAlarm(alarm)

EPICS Meeting - October 2015
 24

