
PvaPy: Python API for EPICS PV Access

Siniša Veseli
Scientific Software Engineering & Data Management

Advanced Photon Source

EPICS Meeting

October 2015

EPICS Meeting - October 2015

About PvaPy

 Python API for PV Access

 Hosted on GitHub: https://github.com/epics-base/pvaPy

 Part of the v4 release: http://sourceforge.net/projects/epics-
pvdata/files

 Simple to build and use: one should be able to get started in
minutes

 Uses Boost.Python framework to wrap PV Access C++ libraries:

- Enables one to leverage existing functionality and reduce
implementation effort

- Simplifies maintenance: future improvements in C++
infrastructure should benefit python PVA API

 Python look and feel: easy conversion between python objects
(dictionaries, lists, etc.) and PV structures

2

EPICS Meeting - October 2015

About PvaPy

 Features

- Standard EPICS build, enhanced with automated
configuration

- Support for all PV data types (scalars, structures, unions)

- Support for setting and retrieving channel values

- Channel monitoring support

- RPC Client/Service support

- Initial NT object support

- Standard Python module documentation

 Goal: provide full PV Access functionality, anything that can be
done via C++ APIs should also be doable with PvaPy

3

EPICS Meeting - October 2015

Build

1) Configure build.

$ make configure EPICS_BASE=<epics_base>

EPICS4_DIR=<epics4_dir>

Automated configuration
generates configure/RELEASE.local and
configure/CONFIG_SITE.local files. It also creates
environment setup files.

2) Compile sources.

$ make

Build process creates and installs a loadable library named
pvaccess.so under the lib/python directory which
can be imported directly by Python.

4

EPICS Meeting - October 2015

Basic Usage

 Before using PvaPy, either source setup file, or modify
$PYTHONPATH manually

 Setup file (bash): source
$PVAPY_DIR/bin/$EPICS_HOST_ARCH/setup.sh

 Manual setup (bash): export
PYTHONPATH=$PVAPY_DIR/lib/python/$PYTHON_V

ERSION/$EPICS_HOST_ARCH:$PYTHONPATH

 Python module is called “pvaccess”
$ python -c "import pvaccess; print

dir(pvaccess)”

EPICS Meeting - October 2015

5

PvObject Class

 Base class for all python PVA objects is PvObject (a generic PV structure)

 It is initialized with a dictionary of introspection data: key is the field name
string, value is one of:

- PVTYPE: a scalar type, any of BOOLEAN, BYTE, UBYTE, SHORT, USHORT,
INT, UINT, LONG, ULONG, FLOAT, DOUBLE, or STRING

- [PVTYPE]: a single element list, representing a scalar array

- {key:value,…}: a dictionary, representing a structure

- [{key:value,…}]: a single element list containing a dictionary,
representing a structure array

- (): an empty tuple, representing variant union

- [()]: a single element list containing an empty tuple, representing
variant union array

- ({key:value,…},): a single element tuple holding a dictionary,
representing a restricted union

- [({key:value,…},)]: a single element list containing a single element
tuple of a dictionary, representing a restricted union array

EPICS Meeting - October 2015

6

PvObject: Simple Structure Example

>>> pv = PvObject({'i' : INT, 's' : STRING})

>>> print pv

structure

 int i 0

 string s

>>> # Can set entire object with key/value dictionary

>>> pv.set({'i' : 12, 's' : 'abcd'})

>>> print pv

structure

 int i 12

 string s abcd

>>> # Can use getters/setters for each field

>>> pv.getString('s')

'abcd'

>>> pv.setString('s', 'xyz')

>>> pv.getString('s')

'xyz'

EPICS Meeting - October 2015
 7

PvObject: Complex Structure Example

 >>> pv = PvObject({'i': INT, 'slist' : [STRING], 'dict' : {'b' :
BOOLEAN, 'dict2' : {'d' : DOUBLE}, 'flist' : [FLOAT]}})

>>> print pv

structure

 int i 0

 string[] slist []

 structure dict

 boolean b 0

 float[] flist []

 structure dict2

 double d 0

>>> # Can use incomplete dictionaries to set fields

>>> pv.set({'i' : 15, 'dict' : {'flist' : [1.1, 2.2, 3.3]}})

>>> print pv

structure

 int i 15

 string[] slist []

 structure dict

 boolean b 0

 float[] flist [1.1,2.2,3.3]

 structure dict2

 double d 0

EPICS Meeting - October 2015

8

PvObject: Conversion to Dictionary

>>> # Conversion to dictionary: use either get() or toDict()

>>> pv.get()

{'i': 15, 'slist': [], 'dict': {'b': False, 'dict2': {'d':

0.0}, 'flist': [1.100000023841858, 2.200000047683716,

3.299999952316284]}}

>>> # Get structure field

>>> pv.getStructure('dict')

{'b': False, 'dict2': {'d': 0.0}, 'flist':

[1.100000023841858, 2.200000047683716, 3.299999952316284]}

>>> # Get introspection dictionary

>>> pv.getStructureDict()

{'i': pvaccess.PvType.INT, 'slist':

[pvaccess.PvType.STRING], 'dict': {'b':

pvaccess.PvType.BOOLEAN, 'dict2': {'d':

pvaccess.PvType.DOUBLE}, 'flist': [pvaccess.PvType.FLOAT]}}

EPICS Meeting - October 2015

9

PvObject: Union Support

 >>> # Union support
>>> pv = PvObject({'v' : (), 'u' : ({'i': INT, 'd' :

DOUBLE},)})

>>> print pv

structure

 union u

 (none)

 any v

 (none)

>>> # Set variant union

>>> s = PvObject({'s' : STRING})

>>> s.setString('xyz')

>>> pv.setUnion('v', s)

>>> print pv

structure

 union u

 (none)

 any v

 string s xyz

EPICS Meeting - October 2015

10

PvObject: Union Support

>>> # Select restricted union field

>>> u = pv.selectUnionField('u', 'i')

>>> pv.getSelectedUnionFieldName('u')

'i'

>>> # Set restricted union field

>>> u.setInt(3)

>>> print u

structure

 int i 3

>>> print pv

structure

 union u

 int i 3

 any v

 string s xyz

EPICS Meeting - October 2015

11

Channel Class

 Provides interface for communicating with PV Access channels

 Support for channel monitoring

 Support for Channel Access (the EPICS Version 3 protocol).

 Channel’s “get()” method returns a PvObject representing the
current value for the given process variable

 Channel’s “put()” method accepts either a PvObject, or a
standard Python data type as input for setting the process
variable

EPICS Meeting - October 2015
 12

Channel Class Example

>>> # In addition to PvObjects, we allow standard

>>> # python types to be used for channel puts

>>> c = Channel('bigstring01’)

>>> c.put('My String')

>>> print c.get()

epics:nt/NTScalar:1.0

 string value My String

>>> c = Channel('intArray01’)

>>> c.put([1,2,3,4,5])

>>> print c.get()

structure

 int[] value [1,2,3,4,5]

EPICS Meeting - October 2015
 13

Channel Monitor Example

 Define function to be called when PV value changes, subscribe to the
channel, and start monitor

>>> def sumMonitor(pv):

... s = 0

... for i in pv.get()['value']:

... s += i

... print s

>>> c = Channel('intArray01')

>>> c.subscribe('sum', sumMonitor)

>>> c.startMonitor()

EPICS Meeting - October 2015
 14

RPC Server

RpcServer class is used for hosting one or more PVA Remote
Procedure Call (RPC) services

Users define an RPC processing function and register it with an
RpcServer instance

The RPC processing function takes a client’s request PvObject
as input, and returns a PvObject that contains the processing
result

>>> def sum(pvRequest):

>>> a = pvRequest.getInt('a')

>>> b = pvRequest.getInt('b')

>>> return PvInt(a+b)

>>> srv = RpcServer()

>>> srv.registerService('sum',sum)

>>> srv.listen()

EPICS Meeting - October 2015
 15

RPC Client

RpcClient is a client class for PVA RPC services

Users initialize an RpcClient object giving the service’s channel
name, prepare a PV request object, and then invoke the service

>>> c = RpcClient('sum')

>>> request = PvObject({'a':INT,'b':INT})

>>> request.set({'a':1,'b':2})

>>> sum = c.invoke(request)

EPICS Meeting - October 2015
 16

Documentation

 Generating HTML docs at build
time:

 $ make doc

 PvaPy uses Sphinx framework

17

EPICS Meeting - October 2015

 Documentation generated during automated builds:
http://epics-
pvdata.sourceforge.net/docbuild/pvaPy/tip/pvaccess.html

Future Work

 Complete support for all Normative Types

 Support for “putGet()” and “getPut()” operations

 Support for Python 3

 Support for NumPy arrays

 Channel monitor enhancements

 Test suite development

 PVA Server implementation

18

EPICS Meeting - October 2015

Summary

PvaPy is the EPICS4 Python API for PV Access.

Its interfaces have been designed with the end user in mind: to
be as simple, flexible and intuitive as possible, while still
retaining all capabilities and features provided by the PVA
protocol.

Give it a try, all comments and suggestions are welcome!

ICALEPCS Poster Session: WEPGF116, 21 Oct 2015, 17:15-18:15

19

EPICS Meeting - October 2015

Acknowledgements

 A.N. Johnson worked on ensuring that PvaPy’s build conforms

to EPICS standards

 M. Kraimer and M. Davidsaver worked on prototyping support
for PV unions

 M. Kraimer developed pvaClientCPP package

 K. Vodopivec provided early feedback and suggestions

 R. Lange and D. Hickin worked on automated builds and
preparing software releases

 N.D. Arnold and the entire EPICS 4 working group provided
support and encouragements for PvaPy development

20

EPICS Meeting - October 2015

21

Additional Slides

EPICS Meeting - October 2015

Derived Object Classes

 Each scalar type has its own class: PvBoolean, PvByte, …, PvString

 All scalar classes can be initialized using scalar value, and have setters/getters

>>> s = PvString('abc')

>>> print s

abc

>>> d = PvDouble(123.456)

>>> print d

123.456

>>> l = PvLong(123456789012345678L)

>>> print l

123456789012345678

>>> l.get()

123456789012345678L

>>> l.set(13L)

>>> l.get()

13L

EPICS Meeting - October 2015

22

Derived Object Classes

 Scalar array type class: PvScalarArray

 It is initialized using scalar type, has setter/getter

>>> array = PvScalarArray(INT)

>>> print array

structure

 int[] value []

>>> array.set([1,2,3,4,5])

>>> print array

structure

 int[] value [1,2,3,4,5]

EPICS Meeting - October 2015
 23

NT Table Example

 Initialize table with number of columns and column type

>>> from pvaccess import *

>>> ntTable = NtTable(3, DOUBLE)

>>> ntTable.setLabels(['Col1', 'Col2', 'Col3'])

>>> ntTable.setColumn(0, [0.1, 1.1, 2.2])

>>> ntTable.setColumn(1, [1.1, 2.2, 3.3])

>>> ntTable.setColumn(2, [2.1, 3.3, 4.4])

 Initialize table with list of column types
>>> ntTable = NtTable([STRING, INT, DOUBLE])

>>> ntTable.setLabels(['String', 'Int', 'Double'])

>>> ntTable.setColumn(0, ['row0', 'row1', 'row2'])

>>> ntTable.setColumn(1, [1, 2, 3])

>>> ntTable.setColumn(2, [2.1, 3.3, 4.4])

>>> ntTable.setDescriptor("Nice Table, Bad Results")

>>> timeStamp = PvTimeStamp(12345678L, 12)

>>> ntTable.setTimeStamp(timeStamp)

>>> alarm = PvAlarm(11, 126, "Server SegFault")

>>> ntTable.setAlarm(alarm)

EPICS Meeting - October 2015
 24

