Acidophilic iron and sulfur oxidizing bacteria driven primary mineral weathering and secondary mineral formation in Fe ore tailings

Qing YI1, Songlin WU1, Gordon SOUTHAM2, Longbin HUANG1

1The University of Queensland, St. Lucia, Queensland 4072, Australia

Abstract

The neutralization of strongly alkaline pH conditions and acceleration of mineral weathering in the alkaline Fe-ore tailings have been identified as the key pre-requisites for eco-engineering tailings-soil formation for sustainable mine site rehabilitation. Acidithiobacillus ferrooxidans has a great potential in neutralising alkaline pH and accelerating primary mineral weathering in the tailings, but little information is available. This study aimed to investigate the colonisation of A. ferrooxidans in alkaline Fe ore tailings and its role in elemental sulfur (S0) oxidation, tailings neutralisation and Fe-bearing minerals weathering through a microcosm experiment. The effects of biological S0 oxidation on the weathering of alkaline Fe ore tailings were examined via various microscopic analysis. It is found that: 1) A. ferrooxidans inoculum combined with S0 amendment rapidly neutralised the alkaline Fe ore tailings; 2) A. ferrooxidans activities induced Fe-bearing primary mineral (e.g., biotite) weathering and secondary mineral (e.g., ferricydrite and jarosite) formation; 3) the association between bacterial cells and tailing minerals were likely facilitated by extracellular polymeric substances (EPS). The behaviour and biogeochemical functionality of A. ferrooxidans in the tailings provide a fundamental basis for developing microbial based technologies towards eco-engineering soil formation in Fe ore tailings.

Environmental Implications

This study has confirmed the survival of sulfur oxidizing and Fe-metabolizing bacteria (i.e. A. ferrooxidans) in the alkaline tailings and their roles in Fe mineral weathering and transformation, which are consistent with the findings of Sun et al. (2018). Further studies are to be carried out to establish fundamental mechanisms on the SOB driven eco-engineering of technosols, including the role of EPS in mediating SOB colonization, SOB-mineral interactions, Fe(II) minerals oxidation, and organo-mineral associations for organic matter sequestration in the tailings. It is important to point out that the current study is based on microcosm study under controlled experimental conditions, the long-term functions of SOB in the tailings may be influenced by both biotic (plants and microbial communities) and abiotic (Fe mineral changes and S0 availability, climate conditions such as drought) factors. Therefore, long-term field study is required to evaluate the performance and functionality of SOB in eco-engineering tailings-soil formation under large scale field conditions with variable biotic and abiotic changes. Importantly, the functions of SOB and their interaction with other microbial communities and plant roots in the tailings should be investigated in field soil-plant systems, for establishing sustainable ecosystems in the tailing site.

Contact Me

QING YI | Ph.D. Research Scholar
Sustainable Minerals Institute
The University of Queensland
Brisbane Qld 4072 Australia
E uqqyi@uq.edu.au
W www.smi.uq.edu.au/profile/3235/qing-yi
D www.linkedin.com/in/qing-yi-6191b8156/